Project description:Fluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield. We recently reported 4-cyanoindole-2'-deoxyribonucleoside (4CIN), which offers superior photophysical characteristics in comparison to 2APN. To further improve upon 4CIN, a focused library of additional analogues combining the structural features of 2APN and 4CIN were synthesized and their photophysical properties were quantified. Nucleosides 2-6 were found to possess diverse photophysical properties with some features superior to 4CIN. In addition, the structure-function relationship data gained from 1-6 can inform the design of next-generation fluorescent indole nucleosides.
Project description:The parent benzophospholo[3,2-b]indole was prepared by the reaction of dichlorophenylphosphine with a dilithium intermediate, which was prepared in two steps from 2-ethynyl-N,N-dimethylaniline. Using the obtained benzophosphole-fused indole as a common starting material, simple modifications were carried out at the phosphorus center of the phosphole, synthesizing various functionalized analogs. The X-ray structure analysis of trivalent phosphole and phosphine oxide showed that the fused tetracyclic moieties are planar. The benzophosphole-fused indoles, such as phosphine oxide, phospholium salt, and borane complex, exhibited strong photoluminescence in dichloromethane (Φ = 67-75%).
Project description:We report simple strategies to synthesize star-shaped molecules containing different heterocycles integrated with a number of variations. Here, cyclotrimerization, Vilsmeier-Haack reaction, Suzuki-Miyaura cross-coupling, and Van Leusen oxazole synthesis have been used as key steps to introduce diverse five-membered heterocycles such as furan, thiophene, and oxazole. More importantly, readily available starting materials such as thiophene, 2-formyl furan, and 2-acetyl furan were utilized. Also, the fluorescent behavior of these π-conjugated systems was studied. C 3-Symmetric molecules containing furan moieties show a stronger fluorescence than thiophene-containing star-shaped compounds.
Project description:Schiff bases represent an essential class in organic chemistry with antitumor, antiviral, antifungal, and antibacterial activities. The synthesis of Schiff bases requires the presence of an organic base as a catalyst such as piperidine. Base-free synthesis of organic compounds using a heterogeneous catalyst has recently attracted more interest due to the facile procedure, high yield, and reusability of the used catalyst. Herein, we present a comparative study to synthesize new Schiff bases containing indole moieties using piperidine as an organic base catalyst and Au@TiO2 as a heterogeneous catalyst. In both methods, the products were isolated in high yields and fully characterized using different spectral analysis techniques. The catalyst was reusable four times, and the activity was slightly decreased. The presence of Au increases the number of acidic sites of TiO2, resulting in C=O polarization. Yields of the prepared Schiff bases in the presence of Au@TiO2 and piperidine were comparable. However, Au@TiO2 is an easily separable and recyclable catalyst, which would facilitate the synthesis of organic compounds without applying any hazardous materials. Furthermore, the luminescence behavior of the synthesized Schiff bases exhibited spectral shape dependence on the substituent group. Interestingly, the compounds also displayed deep-blue fluorescence with Commission Internationale de l'Éclairage (CIE) coordinates of y < 0.1. Thus, these materials may contribute to decreasing the energy consumption of the emitting devices.
Project description:The Bcl-2 family plays a crucial role in regulating cell apoptosis, making it an attractive target for cancer therapy. In this study, a series of indole-based compounds, U1-6, were designed, synthesized, and evaluated for their anticancer activity against Bcl-2-expressing cancer cell lines. The binding affinity, safety profile, cell cycle arrest, and apoptosis effects of the compounds were tested. The designed compounds exhibited potent inhibitory activity at sub-micromolar IC50 concentrations against MCF-7, MDA-MB-231, and A549 cell lines. Notably, U2 and U3 demonstrated the highest activity, particularly against MCF-7 cells. Respectively, both U2 and U3 showed potential BCL-2 inhibition activity with IC50 values of 1.2 ± 0.02 and 11.10 ± 0.07 µM using an ELISA binding assay compared with 0.62 ± 0.01 µM for gossypol, employed as a positive control. Molecular docking analysis suggested stable interactions of compound U2 at the Bcl-2 binding site through hydrogen bonding, pi-pi stacking, and hydrophobic interactions. Furthermore, U2 demonstrated significant induction of apoptosis and cell cycle arrest at the G1/S phase. Importantly, U2 displayed a favourable safety profile on HDF human dermal normal fibroblast cells at 10-fold greater IC50 values compared with MDA-MB-231 cells. These findings underscore the therapeutic potential of compound U2 as a Bcl-2 inhibitor and provide insights into its molecular mechanisms of action.
Project description:The present study details the design, synthesis, and bio-evaluation of indoles 3-16 as dual inhibitors of aromatase and inducible nitric oxide synthase (iNOS)with antiproliferative activity. The study evaluates the antiproliferative efficacy of 3-16 against various cancer cell lines, highlighting hybrids 12 and 16 for their exceptional activity with GI50 values of 25 nM and 28 nM, respectively. The inhibitory effects of the most active hybrids 5, 7, 12, and 16, on both aromatase and iNOS were evaluated. Compounds 12 and 16 were investigated for their apoptotic potential activity, and the results showed that the studied compounds enhance apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking studies are intricately discussed to confirm most active hybrids' 12- and 16-binding interactions with the aromatase active site. Additionally, our novel study discussed the ADME characteristics of derivatives 8-16, highlighting their potential as therapeutic agents with reduced toxicity.
Project description:Due to its double bond, istradefylline rapidly isomerizes to Z-istradefylline when exposed to normal daylight in dilute solution. To solve the poor photostability of the istradefylline solution, a series of istradefylline derivatives (in total 17 compounds, including II-1 and II-2 series) were designed and synthesized, and their biological activity in inhibiting cAMP was evaluated. The IC50 values of compounds II-1-3, II-2-1, II-2-2, II-2-3, II-2-4, and II-2-6 were 7.71, 6.52, 6.16, 7.23, 7.96, and 9.68 μg/mL, respectively, which had the same order of activity as that of istradefylline (IC50 value was 1.94 μg/mL). The preliminary structure-activity relationship suggested that the 6-amino in adenine played an important role in binding an A2A receptor. The results of photostability experiments showed that the photostability of the target compounds of II-1 and II-2 series was improved when compared with that of istradefylline.
Project description:1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) is a common scintillation fluorescent laser dye. In this manuscript, the synthesis of 2-Ar-5-(4-(4-Ar'-1H-1,2,3-triazol-1-yl)phenyl)-1,3,4-oxadiazoles (Ar, Ar' = Ph, naphtalenyl-2, pyrenyl-1, triphenilenyl-2), as PAH-based aza-analogues of POPOP, by means of Cu-catalyzed click reaction between 2-(4-azidophenyl)-5-Ar-1,3,4-oxadiazole and terminal ethynyl-substituted PAHs is reported. An investigation of the photophysical properties of the obtained products was carried out, and their sensory response to nitroanalytes was evaluated. In the case of pyrenyl-1-substituted aza-POPOP, dramatic fluorescence quenching by nitroanalytes was observed.
Project description:Nanojars are a class of supramolecular coordination complexes based on pyrazolate, Cu2+, and OH- ions that self-assemble around highly hydrophilic anions and serve as efficient anion binding and extraction agents. In this work, the synthesis, characterization, and photophysical properties of pyrene-functionalized fluorescent nanojars are presented. Three pyrene derivatives, 4-(pyren-1-yl)pyrazole (HL1), 4-(5-(pyren-1-yl)pent-4-yn-1-yl)pyrazole (HL2), and 4-(3-(pyrazol-4-yl)propyl)-1-(pyren-1-yl)-1,2,3-triazole (HL3), and the corresponding nanojars were synthesized and characterized using nuclear magnetic resonance spectroscopy and mass spectrometry. Electronic absorption, steady-state, and time-resolved fluorescence measurements were carried out to understand the interaction between the pyrene fluorophore and copper nanojars. Optical absorption measurements have shown minor ground state interaction between the fluorophore and nanojars. The fluorescence of pyrene is significantly quenched when attached to nanojars, suggesting strong contribution from the paramagnetic Cu2+ ions. Significant static quenching is observed in the case of L1, when pyrene is directly bound to the nanojar, whereas in the case of L2 and L3, when pyrene is attached to the nanojars using flexible tethers, both static and dynamic quenching are observed.
Project description:In recent decades, human carbonic anhydrase inhibitors (hCAIs) have emerged as an important therapeutic class with various applications including antiglaucoma, anticonvulsants, and anticancer agents. Herein, a novel series of indole-based benzenesulfonamides were designed, synthesized, and biologically evaluated as potential hCAIs. A regioisomerism of the sulfonamide moiety was carried out to afford a total of fifteen indole-based benzenesulfonamides possessing different amide linkers that enable the ligands to be flexible and develop potential H-bond interaction(s) with the target protein. The activity of the synthesized compounds was evaluated against four hCA isoforms (I, II, IX and, XII). Compounds 2b, 2c, 2d, 2f, 2h and 2o exhibited potent and selective profiles over the hCA II isoform with Ki values of 7.3, 9.0, 7.1, 16.0, 8.6 and 7.5 nM, respectively. Among all, compound 2a demonstrated the most potent inhibition against the hCA II isoform with an inhibitory constant (Ki) of 5.9 nM, with 13-, 34-, and 9-fold selectivity for hCA II over I, IX and XII isoforms, respectively. Structure-activity relationship data attained for various substitutions were rationalized. Furthermore, a molecular docking study gave insights into both inhibitory activity and selectivity of the target compounds. Accordingly, this report presents a successful scaffold hoping approach that reveals compound 2a as a highly potent and selective indole-based hCA II inhibitor worthy of further investigation.