Project description:BackgroundAnemia is common in heart failure (HF) patients with chronic kidney disease (CKD) and is associated with worse outcomes. Iron supplementation improves symptoms and is associated with reduced risk of hospitalization for HF in iron-deficiency HF patients. However, iron deficiency is present in <30% of anemic HF patients. Erythropoiesis stimulating agents (ESAs) improve symptoms but are associated with increased risk of thromboembolic events in anemic HF patients with CKD. Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors are a new class of agents for the treatment of anemia. These agents work by stabilizing the HIF complex, thereby stimulating endogenous erythropoietin production. We hypothesized that HIF-PH inhibitors may be associated with reduced risk of cardiovascular outcomes compared with ESAs in anemic HF patients with CKD. Accordingly, we aim to perform the meta-analysis of studies on the efficacy and safety of HIF-PH inhibitors compared with ESAs in anemic HF patients with CKD.MethodsThis meta-analysis will include prospective cohort studies and randomized controlled trials on the effect of HIF-PH inhibitors compared with ESAs in anemic HF patients with CKD. Information of studies will be collected from PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov. The primary outcome will be cardiovascular death. The secondary outcomes will be all-cause death, hospitalization for HF, HF symptoms, exercise capacity, health-related quality of life, and hemoglobin levels.DiscussionThis meta-analysis will evaluate the effect of HIF-PH inhibitors in anemic HF patients with CKD, providing evidence regarding the use of HIF-PH inhibitors in these patients.Systematic review registrationINPLASY202230103.
Project description:Inhibition of hypoxia inducible factor prolyl hydroxylase (PHD) represents a promising strategy for the discovery of a next generation treatment for renal anemia. We identified several 5,6-fused ring systems as novel scaffolds of the PHD inhibitor on the basis of pharmacophore analysis. In particular, triazolopyridine derivatives showed potent PHD2 inhibitory activities. Examination of the predominance of the triazolopyridines in potency by electrostatic calculations suggested favorable π-π stacking interactions with Tyr310. Lead optimization to improve the efficacy of erythropoietin release in cells and in vivo by improving cell permeability led to the discovery of JTZ-951 (compound 14), with a 5-phenethyl substituent on the triazolopyridine group, which increased hemoglobin levels with daily oral dosing in rats. Compound 14 was rapidly absorbed after oral administration and disappeared shortly thereafter, which could be advantageous in terms of safety. Compound 14 was selected as a clinical candidate.
Project description:Aim: We performed a systematic review and network meta-analysis evaluating the safety and efficacy of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) among dialysis chronic kidney disease patients. Methods: Safety was evaluated with any adverse events (AEs), serious adverse events (SAEs), and 12 common events. Efficacy was mainly analyzed with hemoglobin response. All reported results were summarized using mean difference and risk ratio (RR) with 95% confidence interval (CI). Publication bias was assessed through funnel plots. Results: Twenty trials (19 studies) with 14,947 participants were included, comparing six HIF-PHIs with erythropoiesis-stimulating agents (ESAs). No significant differences were indicated in overall AEs and SAEs between each HIF-PHI and ESA. The occurrence of gastrointestinal disorder was higher in enarodustat and roxadustat than in ESAs (RR: 6.92, 95% CI: 1.52-31.40, p = 0.01; RR: 1.30, 95% CI: 1.04-1.61, p = 0.02). The occurrence of hypertension was lower in vadadustat than in ESAs (RR: 0.81, 95% CI: 0.69-0.96, p = 0.01). The occurrence of vascular-access complications was higher in roxadustat (RR: 1.15, 95% CI: 1.04-1.27, p<0.01) and lower in daprodustat (RR: 0.78, 95% CI: 0.66-0.92, p<0.01) than in ESAs. In the risk of the other nine events, including cardiovascular events, no significant differences were observed between HIF-PHIs and ESAs. For hemoglobin response, network meta-analysis showed that compared with ESAs, significant increases were shown in roxadustat (RR: 1.04, 95% CI: 1.01-1.07, p<0.01) and desidustat (RR: 1.22, 95% CI: 1.01-1.48, p = 0.04), whereas noticeable reductions were indicated in vadadustat (RR: 0.88, 95% CI: 0.82-0.94, p<0.01) and molidustat (RR: 0.83, 95% CI: 0.70-0.98, p = 0.02). There was no significant difference between daprodustat and ESAs (RR: 0.97, 95% CI: 0.89-1.06, p = 0.47). Conclusion: Although HIF-PHIs did not show significant differences from ESAs in terms of overall AEs and SAEs, statistical differences in gastrointestinal disorder, hypertension, and vascular-access complications were observed between HIF-PHIs, which deserved to be noted in clinical decision making. Systematic review registration: This study is registered with PROSPERO (registration number CRD42022312252).
Project description:Small-molecule inhibitors of hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) are currently under clinical development as novel treatment options for chronic kidney disease (CKD) associated anemia. Inhibition of HIF-PH mimics hypoxia and leads to increased erythropoietin (EPO) expression and subsequently increased erythropoiesis. Herein we describe the discovery, synthesis, structure-activity relationship (SAR), and proposed binding mode of novel 2,4-diheteroaryl-1,2-dihydro-3H-pyrazol-3-ones as orally bioavailable HIF-PH inhibitors for the treatment of anemia. High-throughput screening of our corporate compound library identified BAY-908 as a promising hit. The lead optimization program then resulted in the identification of molidustat (BAY 85-3934), a novel small-molecule oral HIF-PH inhibitor. Molidustat is currently being investigated in clinical phase III trials as molidustat sodium for the treatment of anemia in patients with CKD.
Project description:We report herein the design and synthesis of a series of orally active, liver-targeted hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitors for the treatment of anemia. In order to mitigate the concerns for potential systemic side effects, we pursued liver-targeted HIF-PHD inhibitors relying on uptake via organic anion transporting polypeptides (OATPs). Starting from a systemic HIF-PHD inhibitor (1), medicinal chemistry efforts directed toward reducing permeability and, at the same time, maintaining oral absorption led to the synthesis of an array of structurally diverse hydroxypyridone analogues. Compound 28a was chosen for further profiling, because of its excellent in vitro profile and liver selectivity. This compound significantly increased hemoglobin levels in rats, following chronic QD oral administration, and displayed selectivity over systemic effects.
Project description:Two primary O(2)-sensors for humans are the HIF-hydroxylases, enzymes that hydroxylate specific residues of the hypoxia inducible factor-? (HIF). These enzymes are factor inhibiting HIF (FIH) and prolyl hydroxylase-2 (PHD2), each an ?-ketoglutarate (?KG) dependent, non-heme Fe(II) dioxygenase. Although the two enzymes have similar active sites, FIH hydroxylates Asn(803) of HIF-1? while PHD2 hydroxylates Pro(402) and/or Pro(564) of HIF-1?. The similar structures but unique functions of FIH and PHD2 make them prime targets for selective inhibition leading to regulatory control of diseases such as cancer and stroke. Three classes of iron chelators were tested as inhibitors for FIH and PHD2: pyridines, hydroxypyrones/hydroxypyridinones and catechols. An initial screen of the ten small molecule inhibitors at varied [?KG] revealed a non-overlapping set of inhibitors for PHD2 and FIH. Dose response curves at moderate [?KG] ([?KG]~K(M)) showed that the hydroxypyrones/hydroxypyridinones were selective inhibitors, with IC(50) in the ?M range, and that the catechols were generally strong inhibitors of both FIH and PHD2, with IC(50) in the low ?M range. As support for binding at the active site of each enzyme as the mode of inhibition, electron paramagnetic resonance (EPR) spectroscopy were used to demonstrate inhibitor binding to the metal center of each enzyme. This work shows some selective inhibition between FIH and PHD2, primarily through the use of simple aromatic or pseudo-aromatic chelators, and suggests that hydroxypyrones and hydroxypyridones may be promising chelates for FIH or PHD2 inhibition.
Project description:HIF prolyl 4-hydroxylases (PHD) are a family of enzymes that mediate key physiological responses to hypoxia by modulating the levels of hypoxia inducible factor 1-α (HIF1α). Certain benzimidazole-2-pyrazole carboxylates were discovered to be PHD2 inhibitors using ligand- and structure-based methods and found to be potent, orally efficacious stimulators of erythropoietin secretion in vivo.
Project description:Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
Project description:The 2-oxoglutarate-dependent hypoxia inducible factor prolyl hydroxylases (PHDs) are targets for treatment of a variety of diseases including anaemia. One PHD inhibitor is approved for use for the treatment of renal anaemia and others are in late stage clinical trials. The number of reported templates for PHD inhibition is limited. We report structure-activity relationship and crystallographic studies on a promising class of 4-hydroxypyrimidine-containing PHD inhibitors.