Project description:BackgroundThere is growing evidence supporting a role for microRNAs (miRNA) as targets in aberrant mechanisms of DNA hypermethylation. Epigenetic silencing of tumor suppressor miRNAs, including miR-663, which has recently been reported to be inactivated by hypermethylation in several cancers, may play important roles in pediatric acute myeloid leukemia (AML). However, expression of miR-663 and its promoter methylation remain status unclear in childhood leukemia.MethodsPromoter methylation status of miR-663 was investigated by methylation specific PCR (MSP) and bisulfate genomic sequencing (BGS). Transcriptional expression of miR-663 was evaluated by semi-quantitative and real-time PCR, and the relationship between expression of miR-663 and promoter methylation was confirmed using 5-aza-2'-deoxycytidine (5-Aza) demethylation reagent.ResultsMiR-663 was aberrantly methylated in 45.5% (5/11) leukemia cell lines; BGS showed that the promoter was significantly methylated in three AML cell lines; methylation of miR-663 was significantly higher in Chinese pediatric AML patients [41.4% (29/70)] compared to normal bone marrow (NBM) control samples [10.0% (3/30)]. These results were confirmed by both BGS and 5-Aza demethylation analysis. In addition, miR-663 transcript expression was significantly lower in AML patients, both with and without miR-663 methylation, compared to controls; however, there were no significant differences in clinical features or French-American-British (FAB) classification between patients with and without miR-663 methylation.ConclusionsExpression of miR-663 was significantly lower in pediatric AML cells compared to NBM controls; furthermore, a high frequency of miR-663 promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Inactivation of miR-663 by promoter hypermethylation could be affected by 5-Aza demethylation. These findings suggest that hypermethylation of the miR-663 promoter may be an early event in the development of pediatric AML.
Project description:Equal access to clinical trial enrollment is important to ensure that findings are generalizable to the broader population. This study aimed to evaluate disparities in enrollment on pediatric oncology clinical trials. We assessed the relationship between patient characteristics and enrollment on COG trial AAML1031 in a cohort of pediatric patients with AML in the Pediatric Health Information System. The associations of enrollment with outcomes were evaluated. Non-Hispanic Black patients, infants, and patients from zip codes with a lower proportion of poverty were less likely to enroll (30% vs. 61%, p = .004; 34% vs. 58%, p = .003; 46% vs. 58%, p = .02). On-therapy mortality was similar among enrolled and nonenrolled patients (7.3% vs. 8.9%, p = .47). Differences in early mortality were more pronounced among nonenrolled patients compared to enrolled patients (3.0% vs. 0.5%, p = .03). Understanding the etiology of these disparities will inform strategies to ensure balanced access to clinical trials across patient populations.
Project description:The relapse rate for children with acute myeloid leukemia (AML) remains high despite advancements in risk classification, multi-agent chemotherapy intensification, stem cell transplantation, and supportive care guidelines. Prognosis for this subgroup of children with relapsed/refractory AML remains poor. It is well known that the ceiling of chemotherapy intensification has been reached, limited by acute and chronic toxicity, necessitating alternative treatment approaches. In the last several years, our improved understanding of disease biology and critical molecular pathways in AML has yielded a variety of new drugs to target these specific pathways. This review provides a summary of antibody drug conjugates (ADCs), small molecule inhibitors, and tyrosine kinase inhibitors with an emphasis on those that are currently under clinical evaluation or soon to open in early phase trials for children with relapsed/refractory AML.
Project description:Recent studies of WT1 mutations in acute myeloid leukemia (AML) mostly report an association with unfavorable clinical outcome. We screened 842 patients treated on 3 consecutive pediatric AML trials for WT1 zinc-finger mutations. Eighty-five mutations were detected in 70 of 842 patients (8.3%). Mutations occurred predominantly in exon 7 (n = 74) but were also found in exons 8 (n = 5) and 9 (n = 6). Normal karyotype was observed in 35.3% of WT1(mut) patients, whereas 27.5% WT1(mut) patients harbored favorable risk cytogenetics. Patients with or without mutations had similar rates of complete remission after one course of induction chemotherapy. Overall survival (OS) for patients with WT1 mutations was 41% versus 54% for those without mutations (P = .016). Corresponding event-free survival (EFS) was also significantly worse for those with WT1 mutations (28% vs 42%; P = .01). However, FLT3/ITD was present in 36% of the WT1(mut) cohort; WT1(mut) patients without FLT3/ITD had similar OS (56% vs 56%, respectively; P = .8) and EFS (35% and 44%, respectively; P = .34) to patients who were wild type for both mutations. In current risk stratification schemes incorporating cytogenetics and FLT3/ITD status, the presence of WT1 mutations has no independent prognostic significance in predicting outcome in pediatric AML. The clinical trials are registered at www.clinicaltrials.gov as #NCT00002798 and #NCT00070174.
Project description:CEBPA mutations have been associated with improved outcome in adult acute myeloid leukemia (AML). We evaluated the prevalence and prognostic significance of CEBPA mutations in 847 children with AML treated on 3 consecutive pediatric trials. Two types of CEBPA mutations-N-terminal truncating mutations and in-frame bZip-domain mutations-were detected in 38 (4.5%) of 847 patients tested; 31 (82%) of 38 patients with mutations harbored both mutation types. Mutation status was correlated with laboratory and clinical characteristics and clinical outcome. CEBPA mutations were significantly more common in older patients, patients with FAB M1 or M2, and patients with normal karyotype. Mutations did not occur in patients with either favorable or unfavorable cytogenetics. Actuarial event-free survival at 5 years was 70% versus 38% (P = .015) with a cumulative incidence of relapse from complete remission of 13% versus 44% (P = .007) for those with and without CEBPA mutations. The presence of CEBPA mutations was an independent prognostic factor for improved outcome (HR = 0.24, P = .047). As CEBPA mutations are associated with lower relapse rate and improved survival, CEBPA mutation analysis needs to be incorporated into initial screening for risk identification and therapy allocation at diagnosis.
Project description:This review aims to provide an overview of the current knowledge of the genetic lesions driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or exclusively occur in pediatric patients and molecular markers of aggressive disease with often poor outcome including fusion oncogenes that involve epigenetic regulators like KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS signal transduction pathways. We discuss the issues faced to faithfully model pediatric acute leukemia in mice. Emerging experimental evidence suggests that the disease phenotype is dependent on the appropriate expression and activity of the driver fusion oncogenes during a particular window of opportunity during fetal development. We also highlight biochemical studies that deciphered some molecular mechanisms of malignant transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances, allowed the development of small molecules with potent anti-leukemic activities in preclinical models (e.g., inhibitors of the KMT2A-MENIN interaction). Finally, we discuss other potential therapeutic strategies that not only target driver fusion-controlled signals but also interfere with the transformed cell state either by exploiting the primed apoptosis or vulnerable metabolic states or by increasing tumor cell recognition and elimination by the immune system.
Project description:Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.
Project description:PurposeThe significance of vascular endothelial growth factor receptor (VEGFR)-2 in numerous solid tumors and acute myeloid leukemia (AML) has been demonstrated, but Apatinib remains largely unexplored. In this study, whether Apatinib combined with homoharringtonine (HHT) kills AML cell lines and its possible mechanisms have been explored.MethodsAML cell lines were treated with Apatinib and HHT in different concentrations with control, Apatinib alone, HHT alone, and Apatinib combined with HHT. The changes of IC50 were measured by CCK8 assay, and apoptosis rate, cell cycle, and the mitochondrial membrane potential in each group were measured by flow cytometry. Finally, the possible cytotoxicity mechanism was analyzed by Western blotting.ResultsOur results noted that Apatinib combined with HHT remarkably inhibited cell proliferation, reduced the capacity of colony-forming, and induced apoptosis and cell cycle arrest in AML cells. Mechanistically, Apatinib and HHT play a role as a suppressor in the expression of VEGFR-2 and the downstream signaling cascades, such as the PI3K, MAPK, and STAT3 pathways.ConclusionOur preclinical data demonstrate that Apatinib combined with HHT exerts a better antileukemia effect than Apatinib alone by inhibiting the VEGFR-2 signaling pathway, suggesting the potential role of Apatinib and HHT in the treatment of AML. This study provides clinicians with innovative combination therapies and new therapeutic targets for the treatment of AML.
Project description:Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.
Project description:We reviewed and categorized 638 of 809 patients who were registered in the Japan Adult Leukemia Study Group acute myeloid leukemia (AML)-97 protocol using morphological means. Patients with the M3 subtype were excluded from the study group. According to the WHO classification, 171 patients (26.8%) had AML with recurrent genetic abnormalities, 133 (20.8%) had AML with multilineage dysplasia (MLD), 331 (51.9%) had AML not otherwise categorized, and 3 (0.5%) had acute leukemia of ambiguous lineage. The platelet count was higher and the rate of myeloperoxidase (MPO)-positive blasts was lower in AML with MLD than in the other WHO categories. The outcome was significantly better in patients with high (>or=50%) than with low (<50%) ratios of MPO-positive blasts (P < 0.01). The 5-year survival rates for patients with favorable, intermediate, and adverse karyotypes were 63.4, 39.1, and 0.0%, respectively, and 35.5% for those with 11q23 abnormalities (P < 0.0001). Overall survival (OS) did not significantly differ between nine patients with t(9;11) and 23 with other 11q23 abnormalities (P = 0.22). Our results confirmed that the cytogenetic profile, MLD phenotype, and MPO-positivity of blasts are associated with survival in patients with AML, and showed that each category had the characteristics of the WHO classification such as incidence, clinical features, and OS.