Architecture of head and neck squamous cell carcinoma tumor microenvironment revealed: can tertiary lymphoid structures predict post-surgery recurrence?
Architecture of head and neck squamous cell carcinoma tumor microenvironment revealed: can tertiary lymphoid structures predict post-surgery recurrence?
Project description:Tertiary lymphoid structures (TLSs) hold the potential role in the prediction of immunotherapy response in several clinical trials. TLSs in head neck squamous cell carcinoma (HNSCC) have been investigated through IHC analysis, whereas there is no TLS gene signature to evaluate the level of TLS neogenesis. We here proposed a TLS signature containing 13 chemokines and determined TLS-hi and TLS-low groups in HNSCC samples from The Cancer Genome Atlas. TLS-hi condition signified a better overall survival. A more inflamed immune infiltrative landscape was identified in the TLS-hi tumors characterized by higher proportion of T cells, TCR/BCR activation and antigen processing. High level of TLSs has a determined role in the clinical significance of T cells. Interesting discovery was that innate lymphoid cells and cancer-associated fibroblasts were positively associated with TLS neogenesis in TME of HNSCC. Furthermore, by integrated TLSs with stromal cells and score, immune cells and score, TMB and malignant cells, we proposed a novel HNSCC TME classifications (HNSCC-TCs 1-5), unravelling the counteracted role of stromal cells and score in inflamed immune landscape, which may provide a novel stromal targeted modality in HNSCC therapy. Finally, we verified that TLS statue is an ideal predictor for immune checkpoint blockade immunotherapy. Current study indicated that the TLSs serve as a novel prognostic biomarker and predictor for immunotherapy, which may provide directions to the current investigations on immunotherapeutic strategies for HNSCC.
Project description:Current immunotherapy paradigms aim to reinvigorate CD8+ T cells, but the contribution of humoral immunity to antitumor immunity remains understudied. Here, we demonstrate that in head and neck squamous cell carcinoma (HNSCC) caused by human papillomavirus infection (HPV+), patients have transcriptional signatures of germinal center (GC) tumor infiltrating B cells (TIL-Bs) and spatial organization of immune cells consistent with tertiary lymphoid structures (TLS) with GCs, both of which correlate with favorable outcome. GC TIL-Bs in HPV+ HNSCC are characterized by distinct waves of gene expression consistent with dark zone, light zone and a transitional state of GC B cells. Semaphorin 4a expression is enhanced on GC TIL-Bs present in TLS of HPV+ HNSCC and during the differentiation of TIL-Bs. Our study suggests that therapeutics to enhance TIL-B responses in HNSCC should be prioritized in future studies to determine if they can complement current T cell mediated immunotherapies.
Project description:ObjectivesThis study aims to assess the prognostic implications of gene signature of the tertiary lymphoid structures (TLSs) in head and neck squamous cell carcinoma (HNSCC) and scrutinize the influence of TLS on immune infiltration.MethodsPatients with HNSCC from the Cancer Genome Atlas were categorized into high/low TLS signature groups based on the predetermined TLS signature threshold. The association of the TLS signature with the immune microenvironment, driver gene mutation status, and tumor mutational load was systematically analyzed. Validation was conducted using independent datasets (GSE41613 and GSE102349).ResultsPatients with a high TLS signature score exhibited better prognosis compared to those with a low TLS signature score. The group with a high TLS signature score had significantly higher immune cell subpopulations compared to the group with a low TLS signature score. Moreover, the major immune cell subpopulations and immune circulation characteristics in the tumor immune microenvironment were positively correlated with the TLS signature. Mutational differences in driver genes were observed between the TLS signature high/low groups, primarily in the cell cycle and NRF2 signaling pathways. Patients with TP53 mutations and high TLS signature scores demonstrated a better prognosis compared to those with TP53 wild-type. In the independent cohort, the relationship between TLS signatures and patient prognosis and immune infiltration was also confirmed. Additionally, immune-related biological processes and signaling pathways were activated with elevated TLS signature.ConclusionHigh TLS signature is a promising independent prognostic factor for HNSCC patients. Immunological analysis indicated a correlation between TLS and immune cell infiltration in HNSCC. These findings provide a theoretical basis for future applications of TLS signature in HNSCC prognosis and immunotherapy.
Project description:Emerging evidence suggests that not only the frequency and composition of tumor-infiltrating leukocytes but also their spatial organization might be a major determinant of tumor progression and response to therapy. Therefore, mapping and analyzing the fine tumor immune architecture could potentially provide insights for predicting cancer prognosis. Here, we performed an explorative, prospective clinical study to assess whether structures within the tumor microenvironment can predict recurrence after salvage surgery in head and neck squamous cell carcinoma (HNSCC). The major immune subsets were measured using flow cytometry and co-detection by indexing (CODEX) multiparametric imaging. Flow cytometry underestimated the number of PMN-MDSCs and neutrophils in the tumor and overestimated the tumor-infiltrating lymphocyte frequency. An ad hoc computational framework was used to identify and analyze discrete cellular neighborhoods. A high frequency of tertiary lymphoid structures composed of CD31highCD38high plasma cells was associated with reduced recurrence after surgery in HNSCC. These data support the notion that the structural architecture of the tumor immune microenvironment plays an essential role in tumor progression and indicates that type 1 tertiary lymphoid structures and long-lived CD31highCD38high plasma cells are associated with good prognosis in HNSCC.SignificanceImaging the spatial tumor immune microenvironment and evaluating the presence of type 1 tertiary lymphoid structures enables prediction of recurrence after surgery in patients with head and neck squamous cell carcinoma.
Project description:Immune checkpoint blockade (ICB) is the standard of care for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), yet efficacy remains low. The combined positive score (CPS) for PD-L1 is the only biomarker approved to predict response to ICB and has limited performance. Tertiary Lymphoid Structures (TLS) have shown promising potential for predicting response to ICB. However, their exact composition, size, and spatial biology in HNSCC remain understudied. To elucidate the impact of TLS spatial biology in response to ICB, we utilized pre-ICB tumor tissue sections from 9 responders (complete response, partial response, or stable disease) and 11 non-responders (progressive disease) classified via RECISTv1.1. A custom multi-immunofluorescence (mIF) staining assay was applied to characterize tumor cells (pan-cytokeratin), T cells (CD4, CD8), B cells (CD19, CD20), myeloid cells (CD16, CD56, CD163), dendritic cells (LAMP3), fibroblasts (α Smooth Muscle Actin), proliferative status (Ki67) and immunoregulatory molecules (PD1). A machine learning model was employed to measure the effect of spatial metrics on achieving a response to ICB. A higher density of B cells (CD20+) was found in responders compared to non-responders to ICB (p = 0.022). The presence of TLS within 100 µm of the tumor was associated with improved overall (p = 0.04) and progression-free survival (p = 0.03). A multivariate machine learning model identified TLS density as a leading predictor of response to ICB with 80% accuracy. Immune cell densities and TLS spatial location play a critical role in the response to ICB in HNSCC and may potentially outperform CPS as a predictor of response.
Project description:The influence of tertiary lymphoid structures (TLSs) on disease progression and the response to immunotherapy in head and neck squamous cell carcinoma (HNSCC) is well established, yet the heterogeneity among these structures remains largely unexplored. We utilized digital spatial profiling technology to perform in situ transcriptomic sequencing of TLSs across varying levels of maturation and distinct tumor regions within HNSCC. We assessed the prognostic significance of TLS maturation and spatial distribution in 260 patients with HNSCC through hematoxylin and eosin staining and multiplex immunohistochemistry. Furthermore, we established a TLS scoring system to predict survival in patients with HNSCC. Our study revealed that mature TLSs in the intratumor region (Intra-TLSs) of HNSCC, enriched with memory B cells, plasma cells, and CD4+ T cells, presented increased B-cell activity gene expression. Conversely, early TLSs (E-TLSs), abundant in endothelial cells, fibroblasts, and regulatory T cells, express epithelial‒mesenchymal transition (EMT)-related genes, potentially fostering tumor growth. Compared with mature TLSs within the peritumoral region (Peri-TLSs), mature Intra-TLSs have greater memory B-cell and macrophage densities and upregulate genes involved in B-cell receptor signaling and immune effector processes. Mature Peri-TLSs, characterized by endothelial cell enrichment and EMT receptor interaction genes, may contribute to tumor progression and immune evasion. Patients with mature Intra-TLSs or invasive margin TLSs (Invas-TLSs) have improved 5-year survival, whereas those with mature Peri-TLSs have poorer prognoses. By integrating TLS maturity and distribution in HNSCC, we developed a TLS scoring system to guide personalized treatments, which is crucial for predicting outcomes.
Project description:BackgroundTertiary lymphoid structures (TLS) correlate with tumour prognosis and immunotherapy responses in gastric cancer (GC) studies. However, understanding the complex and diverse immune microenvironment within TLS requires comprehensive analysis.MethodsWe examined the prognostic impact of TLS within the tumour core (TC) of 59 GC patients undergoing immunotherapy. Multispectral fluorescence imaging was employed to evaluate variations in immune cell infiltration across different TLS sites among 110 GC patients, by quantifying immune cell density and spatial characteristics. We also generated a single-cell transcriptomic atlas of TLS-positive (n = 4) and TLS-negative (n = 8) microenvironments and performed spatial transcriptomics (ST) analysis on two samples.ResultsTLS presence in the TC significantly correlated with improved immune-related overall survival (P = 0.049). CD8+LAG-3-PD-1+TIM-3-, CD4+PD-L1+, and CD4+FoxP3- T cell densities were significantly higher in the TLS within TC compared to tumour and stromal regions. Immune cells within TLS exhibited closer intercellular proximity than those outside TLS. Five key density and spatial characteristics of immune cells within TLS in the TC were selected to develop the Density and Spatial Score risk model. Single-cell RNA sequencing revealed strong intercellular interactions in the presence of TLS within the microenvironment. However, TLS-absent environment facilitated tumour cell interactions with immune cells through MIF- and galectin-dependent pathways, recruiting immunosuppressive cells. ST analysis confirmed that T and B cells co-localise within TLS, enhancing immune response activation compared to cancer nests and exerting a strong anti-tumour effect.ConclusionsTLS presence facilitates frequent cell-to-cell communication, forming an active immune microenvironment, highlighting the prognostic value of TLS.
Project description:Tertiary lymphoid structures (TLSs) are considered to have a good prognosis in multiple solid tumors. However, the prognostic value of TLS in esophageal squamous cell carcinoma (ESCC) is unknown. In this study, we retrospectively enrolled 185 ESCC patients who underwent surgical resection. Hematoxylin and eosin staining was performed to investigate the presence, the abundance, the maturation, and the location of TLSs. We explored the cellular composition of TLSs using traditional immunohistochemistry in serial sections. The prognostic value of TLSs was investigated by univariate and multivariate analyses. A nomogram was constructed to predict the prognosis. TLS-positive tumors were infiltrated with more CD45+ leukocytes, CD20+ B cells, CD4+ and CD8+ T cells, and CD11c+ dendritic cells(DCs) compared with negative tumors. Kaplan-Meier curves showed that the presence and the abundance of TLSs were associated with longer disease-free survival (DFS) (p = 0.0130) and overall survival (OS) (p = 0.0164). In addition, patients with tumors containing more CD20+ B cell infiltration had longer DFS (p = 0.0105) and OS (p = 0.0341). Multivariate analyses demonstrated that the presence of TLSs was an independent prognostic factor for DFS (hazard ratio [HR] = 0.384, p < 0.001) and OS (HR = 0.293, p < 0.001). The nomogram that integrated the tumor stage, histologic grade, and TLS presence had higher prognostic accuracy. Our study suggests that ESCC-related TLSs can be used as a new biomarker for the prognosis of ESCC patients, and further understanding of their formation and mechanism of induction can provide a possible direction and target for immunotherapy of ESCC.
Project description:Head and neck squamous cell carcinomas (HNSCC) are at a high risk of recurrence and multimodal therapy have not significantly improved survival in recent decades. Although immune checkpoint inhibitors (ICIs) are effective in a small proportion of HNSCC patients, the majority do not respond. In this study, we for the first time revealed that xenobiotic metabolic process was significantly associated with resistance to programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors in HNSCC and found that ATP binding cassette subfamily B member 11 (ABCB11) accumulated in immature tertiary lymphoid structures (TLSs) predicted worse progression-free survival (PFS) and overall survival (OS) after PD-1/PD-L1 inhibitors therapy. Moreover, the expression of cytochrome P450 1A2 (CYP1A2), a cytochrome P450 (CYP) enzyme that participates in xenobiotic metabolic process, was significantly upregulated in CD45+ABCB11+ tumor-infiltrating lymphocytes (TILs) compared with CD45+ABCB11-TILs in HNSCC tissues. Whole slide scans of 110 HNSCC tissues with hematoxylin-eosin (HE) and multispectral immuno-fluorescent (mIF) staining revealed that ABCB11 had a high co-expression with CYP1A2 in immature TLSs, and colocalization of ABCB11 and CYP1A2 in immature TLs significantly associated with high infiltration of immunosuppressive T-regulatory (Treg). Our study revealed that ABCB11 accumulated in immature TLSs might upregulate CYP1A2 to mediate xenobiotic metabolic process, thus increase the immunosuppressive Treg infiltration, and induce resistance to PD-1/PD-L1 inhibitors in HNSCC.
Project description:Phase II, multicenter, open-label, multi-cohort proof-of-concept study designed to evaluate the safety and efficacy of Ezabenlimab combined with BI 907828 in patients with unresectable, locally advanced or metastatic solid tumors.