Project description:Muscle tissue is one of the most dynamic and plastic tissues of the mammalian body and covers different roles, such as force generation and metabolic control. Muscular proteomics provides an important opportunity to reveal the molecular mechanisms behind muscle pathophysiology. To ensure successful proteomic analysis, it is necessary to have an efficient and reproducible protein extraction method. This study aimed to evaluate the efficacy of two different extraction protocols of muscle samples for two-dimensional gel electrophoresis. In particular, mouse muscle proteins were extracted by an SDS-based buffer (Method A) and by a UREA/CHAPS/DTE/TRIS solution (Method B). The efficacies of the methods were assessed by performing an image analysis of the 2DE gels and by statistical and multivariate analyses. The 2DE gels in both preparations showed good resolution and good spot overlapping. Methods A and B produced 2DE gels with different means of total spots, higher for B. Image analysis showed different patterns of protein abundance between the protocols. The results showed that the two methods extract and solubilize proteins with different chemical-physical characteristics and different cellular localizations. These results attest the efficacy and reproducibility of both protein extraction methods, which can be parallelly applied for comprehensive proteomic profiling of muscle tissue.
Project description:• Evaluation of two methods for protein extraction from muscle tissues. • Two different extraction methods showed distinct patterns of protein abundance; • Two-dimensional electrophoresis revealed 131 spots with different volumes; • SDS-based buffer (method A) mostly extracted proteins of high MW range and peculiar in sarcomere and muscular fibres, such as Troponin, Myosin, Miozenin 2 and Ankyrin; • Urea/chaps/DTE/tris solution (method B) enriched numerous protein species in a low MW range, several protein fragments and organelle membrane proteins
Project description:Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear. Here we demonstrate that the mammalian EP can be used as a power source for electronic devices. We achieved this by designing an anatomically sized, ultra-low quiescent-power energy harvester chip integrated with a wireless sensor capable of monitoring the EP itself. Although other forms of in vivo energy harvesting have been described in lower organisms, and thermoelectric, piezoelectric and biofuel devices are promising for mammalian applications, there have been few, if any, in vivo demonstrations in the vicinity of the ear, eye and brain. In this work, the chip extracted a minimum of 1.12 nW from the EP of a guinea pig for up to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40-360 s. With future optimization of electrode design, we envision using the biologic battery in the inner ear to power chemical and molecular sensors, or drug-delivery actuators for diagnosis and therapy of hearing loss and other disorders.
Project description:In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues.
Project description:Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES.
Project description:Fibroblast growth factor (FGF) signaling is required for otic placode induction and patterning of the developing inner ear. We have cloned the chick ortholog of Fgf16 and analyzed its expression pattern in the early chick embryo. Expression is restricted to the otic placode and developing inner ear through all the stages examined. By the closed otocyst stage, expression has resolved to anterior and posterior domains that partially overlap with those of bone morphogenetic protein 4 (Bmp4), a marker of the developing sensory patches, the cristae of the anterior and posterior semicircular canals. Platelet-derived growth factor alpha (PDGFA), another growth factor with restricted otic expression, also overlaps with Fgf16 expression. The restricted expression pattern of Fgf16 suggests a role for FGF signaling in the patterning of the sensory cristae, together with BMP signaling.
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 56,57,58 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis. Xenopus inner ears were isolated from larval animals for RNA extraction and hybridization to Affymetrix GeneChip microarrays.
Project description:Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network.
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 56,57,58 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis.
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 50,51,52 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis.