Project description:ObjectiveTo compare the efficacy in patients with different genotypes, identify the potential predictive factors, and summarize the complications of globus pallidus deep brain stimulation (GPi-DBS) treating early-onset dystonia.MethodsThree electronic databases (PubMed, Embase, and Cochrane databases) were searched with no publication data restriction. The primary outcomes were the improvements in Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) score. Pearson's correlation coefficients and a metaregression analysis were used to identify the potential predictive factors. This article was registered in Prospero (CRD42020188527).ResultsFifty-four studies (231 patients) were included. Patients showed significant improvement rate in BFMDRS-M (60.6%, p < 0.001) and BFMDRS-D (57.5%, p < 0.001) scores after treatment with GPi-DBS. BFMDRS-M score improved greater in the DYT-1-positive (p = 0.001) and DYT-11-positive (p = 0.008) patients compared to DYT-6-positive patients. BFMDRS-D score improved greater in the DYT-11 (+) compared to DYT-6 (+) patients (p = 0.010). The relative change of BFMDRS-M (p = 0.002) and BFMDRS-D (p = 0.010) scores was negatively correlated with preoperative BFMDRS-M score. In the metaregression analysis, the best predictive model showed that preoperative BFMDRS-M, disease duration (p = 0.047), and the age at symptom onset (p = 0.027) were important.ConclusionPatients with early-onset dystonia have a significant effect after GPi-DBS treatment, and DYT-1 (+) and DYT-11 (+) patients are better candidates for GPi-DBS. Lower preoperative score, later age of onset, and an earlier age at surgery probably predict better clinical outcomes.
Project description:Treatment outcomes from pallidal deep brain stimulation are highly heterogeneous reflecting the phenotypic and etiologic spectrum of dystonia. Treatment stratification to neurostimulation therapy primarily relies on the phenotypic motor presentation; however, etiology including genetic factors are increasingly recognized as modifiers of treatment outcomes. Here, we describe a 53 year-old female patient with a progressive generalized dystonia since age 25. The patient underwent deep brain stimulation of the globus pallidus internus (GPi-DBS) at age 44. Since the clinical phenotype included mobile choreo-dystonic features, we expected favorable therapeutic outcome from GPi-DBS. Although mobile dystonia components were slightly improved in the long-term outcome from GPi-DBS the overall therapeutic response 9 years from implantation was limited when comparing "stimulation off" and "stimulation on" despite of proper electrode localization and sufficient stimulation programming. In order to further understand the reason for this limited motor symptom response, we aimed to clarify the etiology of generalized dystonia in this patient. Genetic testing identified a novel heterozygous pathogenic SLC2A1 mutation as cause of glucose transporter type 1 deficiency syndrome (GLUT1-DS). This case report presents the first outcome of GPi-DBS in a patient with GLUT1-DS, and suggests that genotype relations may increasingly complement phenotype-based therapy stratification of GPi-DBS in dystonia.
Project description:BackgroundEarly evidence suggests good response to pallidal deep brain stimulation (DBS) in DYT-KMT2B.ObjectivesWe aimed to conduct a systematic review and meta-analysis to assess outcomes and identify predictors of good outcome following GPi-DBS in DYT-KMT2B.MethodsWe searched MEDLINE, Cochrane and MDS-abstracts databases using the MeSH terms "KMT2B and DYT28". We included studies that reported objective outcomes following GPi-DBS in DYT-KMT2B. The BFMDRS-M (Burke-Fahn-Marsden Dystonia Rating Scale- Movement) total scores pre- and post-surgery were used to quantify outcomes. We calculated pooled effects using a random effects meta-analysis and used meta-regression to identify potential effect modifiers. Multiple linear regression using individual patient data was used to identify predictors of good outcome (>50% improvement from baseline on BFMDRS-M).ResultsInitial searches screened 132 abstracts of which 34 full-text articles were identified to be of potential interest. Ten studies reporting 42 individual patients, met the inclusion/exclusion criteria and were included in the final review. The mean age at onset was 6.4 ± 5.7 years and 40% were male. The median follow-up was 12 months (range: 1-264 months). GPi-DBS resulted in median BFMDRS-M improvement of 42.7% (range: -103.5% to 95.9%) postoperatively. Pooled proportion of patients experiencing clinical improvement >50% on BFMDRS-M was 41% (95% CI: 27%-57%). Male gender [β: 22.6, 95% CI: 8.0-37.3, P = 0.004), and higher pre-operative BFMDRS-M score [β: 0.62, 95% CI: 0.36-0.87, P < 0.001) were independently associated with better outcome.ConclusionKMT2B-associated dystonia responds effectively to pallidal stimulation. The outcome is better in males and those with more severe dystonia at baseline.
Project description:IntroductionDeep brain stimulation (DBS) is an established and effective therapy for movement disorders. Here, we present a case of secondary myoclonus-dystonia syndrome following acute disseminated encephalomyelitis (ADEM) in childhood, which was alleviated by DBS. Using a patient-specific connectome analysis, we sought to characterise the fibres and circuits affected by stimulation.Case reportWe report a case of a 20-year-old man with progressive dystonia, myoclonic jerks, and impaired concentration following childhood ADEM. Motor assessments utilising the Unified Myoclonus Rating Scale (UMRS) and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) revealed a greater improvement in dystonia compared to myoclonus following adjustments of DBS parameters. These adjustments were based on visualisation of electrode position and volume of tissue activated (VTA) 3 years after surgery. A patient-specific connectome analysis using the VTA as a region of interest revealed fibre tracts connecting to the cerebello-thalamo-cortical network and the superior frontal gyrus in addition to basal ganglia circuits as particularly effective.ConclusionGlobus pallidus internus (GPi) DBS shows promise as a treatment for secondary myoclonus-dystonia syndromes. Personalised structural considerations, tailored to individual symptoms and clinical characteristics, can provide significant benefits. Patient-specific connectome analysis, specifically, offers insights into the structures involved and may enable a favourable treatment response.
Project description:Tardive dyskinesia and dystonia are intractable extrapyramidal symptoms caused by the blockade of dopamine receptors by antipsychotic drugs. In addition to the reduction or discontinuation of the causative drug, valbenazine for tardive dyskinesia and botulinum toxin for tardive dystonia have been reported to be effective. However, their efficacy has not been fully demonstrated. In this study, we report the case of a female patient with bipolar disorder, valbenazine-resistant tardive dystonia, and tardive dyskinesia who achieved improvement in extrapyramidal symptoms with electroconvulsive therapy. Additionally, we conducted a narrative literature review on the safety and efficacy of electroconvulsive therapy for tardive dyskinesia and dystonia.
Project description:IntroductionDystonia is the third most common pediatric movement disorder and is often difficult to treat. Deep brain stimulation (DBS) of the internal pallidum (GPi) has been demonstrated as a safe and effective treatment for genetic dystonia in adolescents and adults. The results of DBS in children are limited to individual cases or case series, although it has been proven to be an effective procedure in carefully selected pediatric cohorts. The aim of our study was to present the treatment outcome for 7- to 9-year-old pediatric patients with disabling monogenic isolated generalized DYT-THAP1 and DYT-KMT2B dystonia after bilateral GPi-DBS.Patients and resultsWe present three boys aged <10 years; two siblings with disabling generalized DYT-THAP1 dystonia and a boy with monogenic-complex DYT-KMT2B. Dystonia onset occurred between the ages of 3 and 6. Significantly disabled children were mostly dependent on their parents. Pharmacotherapy was inefficient and patients underwent bilateral GPi-DBS. Clinical signs of dystonia improved significantly in the first month after the implantation and continued to maintain improved motor functions, which were found to have improved further at follow-up. These patients were ambulant without support and included in everyday activities. All patients had significantly lower Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) values, indicating >25% improvement over the first 15 months. However, there was a decline in speech and upper limb function, manifesting with bradylalia, bradykinesia, and dysphonia, which decreased after treatment with trihexyphenidyl.ConclusionAlthough reports of patients with monogenic dystonia, particularly DYT-THAP1, treated with DBS are still scarce, DBS should be considered as an efficient treatment approach in children with pharmacoresistent dystonia, especially with generalized monogenic dystonia and to prevent severe and disabling symptoms that reduce the quality of life, including emotional and social aspects. Patients require an individual approach and parents should be properly informed about expectations and possible outcomes, including relapses and impairments, in addition to DBS responsiveness and related improvements. Furthermore, early genetic diagnosis and the provision of appropriate treatments, including DBS, are mandatory for preventing severe neurologic impairments.
Project description:BackgroundTardive dyskinesia is a movement disorder characterised by irregular, stereotyped, and choreiform movements associated with the use of antipsychotic medication. We aim to provide recommendations on the treatment of tardive dyskinesia.MethodsWe performed a systematic review of studies of the treatment of tardive dyskinesia. Studies were rated for methodological quality using the American Academy of Neurology Risk of Bias Classification system. Overall level of evidence classifications and grades of recommendation were made using the Scottish Intercollegiate Guidelines Network framework.ResultsPreventing tardive dyskinesia is of primary importance, and clinicians should follow best practice for prescribing antipsychotic medication, including limiting the prescription for specific indications, using the minimum effective dose, and minimising the duration of therapy. The first-line management of tardive dyskinesia is the withdrawal of antipsychotic medication if clinically feasible. Yet, for many patients with serious mental illness, the discontinuation of antipsychotics is not possible due to disease relapse. Switching from a first-generation to a second-generation antipsychotic with a lower D2 affinity, such as clozapine or quetiapine, may be effective in reducing tardive dyskinesia symptoms. The strongest evidence for a suitable co-intervention to treat tardive dyskinesia comes from tests with the new VMAT inhibitors, deutetrabenazine and valbenazine. These medications have not been approved for use in Canada.ConclusionData on tardive dyskinesia treatment are limited, and the best management strategy remains prevention. More long-term safety and efficacy data are needed for deutetrabenazine and valbenazine, and their routine availability to patients outside of the USA remains in question.
Project description:BackgroundTardive dyskinesia (TD) is a persistent and potentially disabling movement disorder associated with prolonged exposure to dopamine receptor blocking agents such as antipsychotics. With the expanding use of antipsychotics, research is needed to better understand patient perspectives of TD, which clinical assessments may fail to capture. Social media listening (SML), which is recognized by the US FDA as a method that can advance ongoing efforts for more patient-focused drug development, has been used to understand patient experiences in other disease states. This is the first study to use SML analysis of unsolicited patient and caregiver insights to help clinicians understand how patients describe their symptoms, the emotional distress associated with TD, and the impact on caregivers.MethodsIn this pilot study, a comprehensive search was performed for publicly available, English-language, online content posted between March 2017 and November 2019 on social media platforms, blogs, and forums. An analytics platform (NetBase™) identified posts containing patient or caregiver experiences of assumed TD using predefined search terms. All posts were manually curated and reviewed to ensure quality and validity of the post and to further classify key symptoms, sentiments, and themes.ResultsA total of 261 posts from patients/caregivers ("patient insights") were identified using predefined search terms; 107 posts were used for these analyses. Posts were primarily from forums (47%) and Twitter (33%). Analysis of the most common sentiment-related terms (e.g. "feel" [n = 31], "worse" [n = 17], "symptom" [n = 14], "better" [n = 12]) indicated that 64% were negative, 33% were neutral, and 3% were positive. Theme analysis revealed that patients often felt angry about having TD from a medication used to treat a different condition. In addition, patients felt insecure, including feeling unaccepted by society and fear of being judged by others.ConclusionAlthough this study was limited by inherent methodological constraints (e.g., small sample size, reliance on patient self-report), the perspectives generated from analyzing social media may help convey the unmet needs of patients with TD. This analysis indicated that movement-related symptoms are the most common patient concern, resulting in strong feelings of anger and insecurity.
Project description:ObjectiveTo evaluate the long-term safety and efficacy of deutetrabenazine in patients with tardive dyskinesia (TD).MethodPatients with TD who completed the 12 week, phase 3, placebo-controlled trials were eligible to enter this open-label, single-arm study. The open-label study consisted of a 6 week dose-escalation phase and a long-term maintenance phase (clinic visits at Weeks 4, 6 and 15, and every 13 weeks until Week 106). Patients began deutetrabenazine at 12 mg/day, titrating up to a dose that was tolerable and provided adequate dyskinesia control, based on investigator judgement, with a maximum allowed dose of 48 mg/day (36 mg/day for patients taking strong cytochrome P450 2D6 (CYP2D6) inhibitors). Safety measures included incidence of adverse events (AEs) and scales used to monitor parkinsonism, akathisia/restlessness, anxiety, depression, suicidality and somnolence/sedation. Efficacy endpoints included the change in Abnormal Involuntary Movement Scale (AIMS) score (items 1 to 7) from baseline and the proportion of patients rated as 'Much Improved' or 'Very Much Improved' on the Clinical Global Impression of Change.ResultsA total of 343 patients enrolled in the extension study, and there were 331 patient-years of exposure in this analysis. The exposure-adjusted incidence rates of AEs with long-term treatment were comparable to or lower than those observed in the phase 3 trials. The mean (SE) change in AIMS score was -4.9 (0.4) at Week 54 (n = 146), - 6.3 (0.7) at Week 80 (n = 66) and -5.1 (2.0) at Week 106 (n = 8).ConclusionsOverall, long-term treatment with deutetrabenazine was efficacious, safe, and well tolerated in patients with TD.Trial registration numberNCT02198794.