Project description:BackgroundFall rates among adults with multiple sclerosis are consistently greater than 50%, but near-falls (i.e. a trip or stumble) are often undocumented. Furthermore, little is known about the circumstances surrounding fall and near-fall events. The purpose of this study was to examine the similarities and differences among non-fallers, near-fallers and fallers with multiple sclerosis, including the circumstances that surround falls and near-falls.MethodsIn a single visit, 135 multiple sclerosis participants completed the Hopkins Falls Grading Scale, a custom questionnaire investigating circumstances surrounding falls and near-falls, and performed the Timed Up and Go and Timed 25-Foot Walk tests. Mann-Whitney tests were used to examine differences between fallers, near-fallers and non-fallers. Multiple logistic regression with AIC criterion was used to examine associations of circumstances with the odds of falling vs. near-falling. Cumulative odds ordinal logistic regression was used to analyze the association between each of the walking tests and the susceptibility of the individual for falls or near-falls.Results30% of individuals reported falls, while 44% reported near-falls over a 1-year period. Non-fallers completed the walking tests more quickly than near-fallers (p < 0.0045), and fallers (p < 0.0001); near-fallers and fallers demonstrated similar motor profiles. Individuals were more likely to sustain a fall rather than a near-fall under the following circumstances: transferring outside the home (p = 0.015) and tripping over an obstacle (p = 0.025). Performing 1-second slower on the walking tests increased the odds of a history of a fall by 6-20%.ConclusionNear-falls occur commonly in individuals with MS; near-fallers and fallers reported similar circumstances surrounding fall events and demonstrated similar performance on standard timed walking tests. Clinicians monitoring individuals with MS should consider evaluation of the circumstances surrounding falls in combination with quantitative walking measures to improve determination of fall risk and appropriate rehabilitation interventions.
Project description:An intelligent insole system may monitor the individual's foot pressure and temperature in real-time from the comfort of their home, which can help capture foot problems in their earliest stages. Constant monitoring for foot complications is essential to avoid potentially devastating outcomes from common diseases such as diabetes mellitus. Inspired by those goals, the authors of this work propose a full design for a wearable insole that can detect both plantar pressure and temperature using off-the-shelf sensors. The design provides details of specific temperature and pressure sensors, circuit configuration for characterizing the sensors, and design considerations for creating a small system with suitable electronics. The procedure also details how, using a low-power communication protocol, data about the individuals' foot pressure and temperatures may be sent wirelessly to a centralized device for storage. This research may aid in the creation of an affordable, practical, and portable foot monitoring system for patients. The solution can be used for continuous, at-home monitoring of foot problems through pressure patterns and temperature differences between the two feet. The generated maps can be used for early detection of diabetic foot complication with the help of artificial intelligence.
Project description:Electromyography (EMG)-based audiovisual biofeedback systems, developed and tested in research settings to train neuromuscular control in patient populations such as cerebral palsy (CP), have inherent implementation obstacles that may limit their translation to clinical practice. The purpose of this study was to design and validate an alternative, plantar pressure-based biofeedback system for improving ankle plantar flexor recruitment during walking in individuals with CP. Eight individuals with CP (11-18 years old) were recruited to test both an EMG-based and a plantar pressure-based biofeedback system while walking. Ankle plantar flexor muscle recruitment, co-contraction at the ankle, and lower limb kinematics were compared between the two systems and relative to baseline walking. Relative to baseline walking, both biofeedback systems yielded significant increases in mean soleus (43-58%, p < 0.05), and mean (68-70%, p < 0.05) and peak (71-82%, p < 0.05) medial gastrocnemius activation, with no differences between the two systems and strong relationships for all primary outcome variables (R = 0.89-0.94). Ankle co-contraction significantly increased relative to baseline only with the EMG-based system (52%, p = 0.03). These findings support future research on functional training with this simple, low-cost biofeedback modality.
Project description:This study proposes a novel method that uses electroencephalography (EEG) signals to classify Parkinson's Disease (PD) and demographically matched healthy control groups. The method utilizes the reduced beta activity and amplitude decrease in EEG signals that are associated with PD. The study involved 61 PD patients and 61 demographically matched controls groups, and EEG signals were recorded in various conditions (eyes closed, eyes open, eyes both open and closed, on-drug, off-drug) from three publicly available EEG data sources (New Mexico, Iowa, and Turku). The preprocessed EEG signals were classified using features obtained from gray-level co-occurrence matrix (GLCM) features through the Hankelization of EEG signals. The performance of classifiers with these novel features was evaluated using extensive cross-validations (CV) and leave-one-out cross-validation (LOOCV) schemes. This method under 10 × 10 fold CV, the method was able to differentiate PD groups from healthy control groups using a support vector machine (SVM) with an accuracy of 92.4 ± 0.01, 85.7 ± 0.02, and 77.1 ± 0.06 for New Mexico, Iowa, and Turku datasets, respectively. After a head-to-head comparison with state-of-the-art methods, this study showed an increase in the classification of PD and controls.
Project description:Although the multifactorial nature of falls in Parkinson's disease (PD) is well described, optimal assessment for the identification of fallers remains unclear. Thus, we aimed to identify clinical and objective gait measures that best discriminate fallers from non-fallers in PD, with suggestions of optimal cutoff scores.MethodsIndividuals with mild-to-moderate PD were classified as fallers (n = 31) or non-fallers (n = 96) based on the previous 12 months' falls. Clinical measures (demographic, motor, cognitive and patient-reported outcomes) were assessed with standard scales/tests, and gait parameters were derived from wearable inertial sensors (Mobility Lab v2); participants walked overground, at a self-selected speed, for 2 min under single and dual-task walking conditions (maximum forward digit span). Receiver operating characteristic curve analysis identified measures (separately and in combination) that best discriminate fallers from non-fallers; we calculated the area under the curve (AUC) and identified optimal cutoff scores (i.e., point closest-to-(0,1) corner).ResultsSingle gait and clinical measures that best classified fallers were foot strike angle (AUC = 0.728; cutoff = 14.07°) and the Falls Efficacy Scale International (FES-I; AUC = 0.716, cutoff = 25.5), respectively. Combinations of clinical + gait measures had higher AUCs than combinations of clinical-only or gait-only measures. The best performing combination included the FES-I score, New Freezing of Gait Questionnaire score, foot strike angle and trunk transverse range of motion (AUC = 0.85).ConclusionMultiple clinical and gait aspects must be considered for the classification of fallers and non-fallers in PD.
Project description:BackgroundLateral wedge insoles (LWI), standalone or with medial arch support (supported-LWI), have been thoroughly investigated for their effects on modifying gait biomechanics for people with knee osteoarthritis. However, plantar pressure distribution between these insole types has not been investigated and could provide insight towards insole prescription with concomitant foot symptoms taken into consideration.MethodsIn a sample of healthy individuals (n = 40), in-shoe plantar pressure was measured during walking with LWI, with or without medial arch support (variable- and uniform-stiffness designs), and a flat control insole condition. Pressure data from the plantar surface of the foot were divided into seven regions: medial/lateral rearfoot, midfoot, medial/central/lateral forefoot, hallux. Plantar pressure outcomes assessed were the medial-lateral pressure index (MLPI) for the whole foot, and the peak pressure, pressure-time integral (PTI), and contact area in each plantar region. Comfort in each insole condition was rated as a change relative to the flat control insole condition. Repeated-measures analyses of variance were calculated to compare the plantar pressure outcomes between insole conditions.ResultsRegionally, medial rearfoot and forefoot pressure were reduced by all wedged insoles, with the variable-stiffness supported-wedge showing greater reductions than the standalone wedge. Lateral rearfoot and forefoot pressure were reduced by both supported-LWI, but unchanged by the standalone wedge. In the midfoot, the standalone wedge maintained pressure but reduced regional contact area, while both supported-LWI increased midfoot pressure and contact area. All LWI increased the MLPI, indicating a lateral shift in plantar pressure distribution throughout the weightbearing phase of gait. Comfort ratings were not significantly different between insole conditions.ConclusionsRegional differences in plantar pressure may help determine an appropriate lateral wedge insole variation to avoid exacerbation of concomitant foot symptoms by minimizing pressure in symptomatic regions. Lateral shifts in plantar pressure distribution were observed in all laterally wedged conditions, including one supported-LWI that was previously shown to be biomechanically ineffective for modifying knee joint load distribution. Thus, shifts in foot centre of pressure may not be a primary mechanism by which LWI can modify knee joint load distribution for people with knee osteoarthritis.
Project description:This study aimed to find the correlation between conventional Arch Index (AI) measurements and our prototype of a simplified insole-based plantar pressure measurement system and to find out the effective plantar pressure sensor position. Twenty-one subjects participated in this study, which was divided into two groups: 10 subjects with flatfoot and 11 subjects with normal foot. Five force sensitive resistance sensors were used on this prototype using Arduino as the data acquisition device. Two types of trials, namely static and dynamic, were conducted to validate our system against the ink-type AI measurement as a golden standard. The results showed that in the static trial, there was a high linear correlation with the medial arch sensor configuration, while in the dynamic trial, there was a high linear correlation in the medial arch sensor configuration and sensor 5 configuration. This study showed that both static and dynamic tests using the self-developed device could effectively determine most of the flatfoot subjects and suggests that in the future, it can be applied in clinical applications because of its advantages when compared to the expensive-high tech graphic input board and conventional tools, like ink-type based measurements.
Project description:BackgroundBradykinesia is the hallmark feature of Parkinson's disease (PD); however, it can manifest in other conditions, including essential tremor (ET), and in healthy elderly individuals.ObjectiveHere we assessed whether bradykinesia features aid in distinguishing PD, ET, and healthy elderly individuals.MethodsWe conducted simultaneous video and kinematic recordings of finger tapping in 44 PD patients, 69 ET patients, and 77 healthy elderly individuals. Videos were evaluated blindly by expert neurologists. Kinematic recordings were blindly analyzed. We calculated the inter-raters agreement and compared data among groups. Density plots assessed the overlapping in the distribution of kinematic data. Regression analyses and receiver operating characteristic curves determined how the kinematics influenced the likelihood of belonging to a clinical score category and diagnostic group.ResultsThe inter-rater agreement was fair (Fleiss K = 0.32). Rater found the highest clinical scores in PD, and higher scores in ET than healthy elderly individuals (p < 0.001). In regard to kinematic analysis, the groups showed variations in movement velocity, with PD presenting the slowest values and ET displaying less velocity than healthy elderly individuals (all ps < 0.001). Additionally, PD patients showed irregular rhythm and sequence effect. However, kinematic data significantly overlapped. Regression analyses showed that kinematic analysis had high specificity in differentiating between PD and healthy elderly individuals. Nonetheless, accuracy decreased when evaluating subjects with intermediate kinematic values, i.e., ET patients.ConclusionDespite a considerable degree of overlap, bradykinesia features vary to some extent in PD, ET, and healthy elderly individuals. Our findings have implications for defining bradykinesia and categorizing patients.
Project description:Patients with bilateral vestibulopathy (BVP) present with unsteadiness during standing and walking, limiting their activities of daily life and, more importantly, resulting in an increased risk of falling. In BVP patients, falls are considered as one of the major complications, with patients having a 31-fold increased risk of falling compared to healthy subjects. Thus, highlighting objective measures that can easily and accurately assess the risk of falling in BVP patients is an important step in reducing the incidence of falls and the accompanying burdens. Therefore, this study investigated the interrelations between demographic characteristics, vestibular function, questionnaires on self-perceived handicap and balance confidence, clinical balance measures, gait variables, and fall status in 27 BVP patients. Based on the history of falls in the preceding 12 months, the patients were subdivided in a "faller" or "non-faller" group. Results on the different outcome measures were compared between the "faller" and "non-faller" subgroups using Pearson's chi-square test in the case of categorical data; for continuous data, Mann-Whitney U test was used. Performances on the clinical balance measures were comparable between fallers and non-fallers, indicating that, independent from fall status, the BVP patients present with an increased risk of falling. However, fallers tended to report a worse self-perceived handicap and confidence during performing activities of daily life. Spatiotemporal parameters of gait did not differ between fallers and non-fallers during walking at slow, preferred, or fast walking speed. These results may thus imply that, when aiming to distinguish fallers from non-fallers, the BVP patients' beliefs concerning their capabilities may be more important than the moderately or severely affected physical performance within a clinical setting. Outcome measures addressing the self-efficacy and fear of falling in BVP patients should therefore be incorporated in future research to investigate whether these are indeed able to distinguish fallers form non-fallers. Additionally, information regarding physical activity could provide valuable insights on the contextual information influencing behavior and falls in BVP.
Project description:BackgroundIn people with diabetes, offloading high-risk foot regions by optimising footwear, or insoles, may prevent ulceration. This systematic review aimed to summarise and evaluate the evidence for footwear and insole features that reduce pathological plantar pressures and the occurrence of diabetic neuropathy ulceration at the plantar forefoot in people with diabetic neuropathy.MethodsSix electronic databases (Medline, Cinahl, Amed, Proquest, Scopus, Academic Search Premier) were searched in July 2019. The search period was from 1987 to July 2019. Articles, in English, using footwear or insoles as interventions in patients with diabetic neuropathy were reviewed. Any study design was eligible for inclusion except systematic literature reviews and case reports. Search terms were diabetic foot, physiopathology, foot deformities, neuropath*, footwear, orthoses, shoe, footwear prescription, insole, sock*, ulcer prevention, offloading, foot ulcer, plantar pressure.ResultsTwenty-five studies were reviewed. The included articles used repeated measure (n = 12), case-control (n = 3), prospective cohort (n = 2), randomised crossover (n = 1), and randomised controlled trial (RCT) (n = 7) designs. This involved a total of 2063 participants. Eleven studies investigated footwear, and 14 studies investigated insoles as an intervention. Six studies investigated ulcer recurrence; no study investigated the first occurrence of ulceration. The most commonly examined outcome measures were peak plantar pressure, pressure-time integral and total contact area. Methodological quality varied. Strong evidence existed for rocker soles to reduce peak plantar pressure. Moderate evidence existed for custom insoles to offload forefoot plantar pressure. There was weak evidence that insole contact area influenced plantar pressure.ConclusionRocker soles, custom-made insoles with metatarsal additions and a high degree of contact between the insole and foot reduce plantar pressures in a manner that may reduce ulcer occurrence. Most studies rely on reduction in plantar pressure measures as an outcome, rather than the occurrence of ulceration. There is limited evidence to inform footwear and insole interventions and prescription in this population. Further high-quality studies in this field are required.