Project description:BackgroundStructural variant (SV) calling from DNA sequencing data has been challenging due to several factors, including the ambiguity of short-read alignments, multiple complex SVs in the same genomic region, and the lack of "truth" datasets for benchmarking. Additionally, caller choice, parameter settings, and alignment method are known to affect SV calling. However, the impact of FASTQ read order on SV calling has not been explored for long-read data.ResultsHere, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different SV callers on FASTQ read order. Comparisons of variant call format files generated from the original and permutated FASTQ files demonstrated that the order of input data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive to the order of the input data, especially at the highest depths where over 70% of the SV calls generated from pairs of differently ordered FASTQ files were in disagreement. These demonstrate that read order sensitivity is a complex, multifactorial process, as the differences observed both within and between species varied considerably according to the specific combination of aligner, SV caller, and sequencing depth. In addition to the SV callers being sensitive to the input data order, the SAMtools alignment sorting algorithm was identified as a source of variability following read order randomization.ConclusionThe results of this study highlight the sensitivity of SV calling on the order of reads encoded in FASTQ files, which has not been recognized in long-read approaches. These findings have implications for the replication of SV studies and the development of consistent SV calling protocols. Our study suggests that researchers should pay attention to the input order sensitivity of read alignment sorting methods when analyzing long-read sequencing data for SV calling, as mitigating a source of variability could facilitate future replication work. These results also raise important questions surrounding the relationship between SV caller read order sensitivity and tool performance. Therefore, tool developers should also consider input order sensitivity as a potential source of variability during the development and benchmarking of new and improved methods for SV calling.
Project description:BackgroundStructural variants (SVs) play a crucial role in gene regulation, trait association, and disease in humans. SV genotyping has been extensively applied in genomics research and clinical diagnosis. Although a growing number of SV genotyping methods for long reads have been developed, a comprehensive performance assessment of these methods has yet to be done.ResultsBased on one simulated and three real SV datasets, we performed an in-depth evaluation of five SV genotyping methods, including cuteSV, LRcaller, Sniffles, SVJedi, and VaPoR. The results show that for insertions and deletions, cuteSV and LRcaller have similar F1 scores (cuteSV, insertions: 0.69-0.90, deletions: 0.77-0.90 and LRcaller, insertions: 0.67-0.87, deletions: 0.74-0.91) and are superior to other methods. For duplications, inversions, and translocations, LRcaller yields the most accurate genotyping results (0.84, 0.68, and 0.47, respectively). When genotyping SVs located in tandem repeat region or with imprecise breakpoints, cuteSV (insertions and deletions) and LRcaller (duplications, inversions, and translocations) are better than other methods. In addition, we observed a decrease in F1 scores when the SV size increased. Finally, our analyses suggest that the F1 scores of these methods reach the point of diminishing returns at 20× depth of coverage.ConclusionsWe present an in-depth benchmark study of long-read SV genotyping methods. Our results highlight the advantages and disadvantages of each genotyping method, which provide practical guidance for optimal application selection and prospective directions for tool improvement.
Project description:The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the 'genome in a bottle' (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads.
Project description:Structural Variants (SVs) are a crucial type of genetic variant that can significantly impact phenotypes. Therefore, the identification of SVs is an essential part of modern genomic analysis. In this article, we present kled, an ultra-fast and sensitive SV caller for long-read sequencing data given the specially designed approach with a novel signature-merging algorithm, custom refinement strategies and a high-performance program structure. The evaluation results demonstrate that kled can achieve optimal SV calling compared to several state-of-the-art methods on simulated and real long-read data for different platforms and sequencing depths. Furthermore, kled excels at rapid SV calling and can efficiently utilize multiple Central Processing Unit (CPU) cores while maintaining low memory usage. The source code for kled can be obtained from https://github.com/CoREse/kled.
Project description:Long-read sequencing has enabled unprecedented surveys of structural variation across the entire human genome. To maximize the potential of long-read sequencing in this context, novel mapping methods have emerged that have primarily focused on either speed or accuracy. Various heuristics and scoring schemas have been implemented in widely used read mappers (minimap2 and NGMLR) to optimize for speed or accuracy, which have variable performance across different genomic regions and for specific structural variants. Our hypothesis is that constraining read mapping to the use of a single gap penalty across distinct mutational hot spots reduces read alignment accuracy and impedes structural variant detection. We tested our hypothesis by implementing a read-mapping pipeline called Vulcan that uses two distinct gap penalty modes, which we refer to as dual-mode alignment. The high-level idea is that Vulcan leverages the computed normalized edit distance of the mapped reads via minimap2 to identify poorly aligned reads and realigns them using the more accurate yet computationally more expensive long-read mapper (NGMLR). In support of our hypothesis, we show that Vulcan improves the alignments for Oxford Nanopore Technology long reads for both simulated and real datasets. These improvements, in turn, lead to improved accuracy for structural variant calling performance on human genome datasets compared to either of the read-mapping methods alone. Vulcan is the first long-read mapping framework that combines two distinct gap penalty modes for improved structural variant recall and precision. Vulcan is open-source and available under the MIT License at https://gitlab.com/treangenlab/vulcan.
Project description:Long-read RNA sequencing (lrRNA-seq) produces detailed information about full-length transcripts, including novel and sample-specific isoforms. Furthermore, there is an opportunity to call variants directly from lrRNA-seq data. However, most state-of-the-art variant callers have been developed for genomic DNA. Here, there are two objectives: first, we perform a mini-benchmark on GATK, DeepVariant, Clair3, and NanoCaller primarily on PacBio Iso-Seq, data, but also on Nanopore and Illumina RNA-seq data; second, we propose a pipeline to process spliced-alignment files, making them suitable for variant calling with DNA-based callers. With such manipulations, high calling performance can be achieved using DeepVariant on Iso-seq data.
Project description:PurposeStructural variants (SVs) may be an underestimated cause of hereditary cancer syndromes given the current limitations of short-read next-generation sequencing. Here we investigated the utility of long-read sequencing in resolving germline SVs in cancer susceptibility genes detected through short-read genome sequencing.MethodsKnown or suspected deleterious germline SVs were identified using Illumina genome sequencing across a cohort of 669 advanced cancer patients with paired tumor genome and transcriptome sequencing. Candidate SVs were subsequently assessed by Oxford Nanopore long-read sequencing.ResultsNanopore sequencing confirmed eight simple pathogenic or likely pathogenic SVs, resolving three additional variants whose impact could not be fully elucidated through short-read sequencing. A recurrent sequencing artifact on chromosome 16p13 and one complex rearrangement on chromosome 5q35 were subsequently classified as likely benign, obviating the need for further clinical assessment. Variant configuration was further resolved in one case with a complex pathogenic rearrangement affecting TSC2.ConclusionOur findings demonstrate that long-read sequencing can improve the validation, resolution, and classification of germline SVs. This has important implications for return of results, cascade carrier testing, cancer screening, and prophylactic interventions.
Project description:Lepidopteran species are mostly pests, causing serious annual economic losses. High-quality genome sequencing and assembly uncover the genetic foundation of pest occurrence and provide guidance for pest control measures. Long-read sequencing technology and assembly algorithm advances have improved the ability to timeously produce high-quality genomes. Lepidoptera includes a wide variety of insects with high genetic diversity and heterozygosity. Therefore, the selection of an appropriate sequencing and assembly strategy to obtain high-quality genomic information is urgently needed. This research used silkworm as a model to test genome sequencing and assembly through high-coverage datasets by de novo assemblies. We report the first nearly complete telomere-to-telomere reference genome of silkworm Bombyx mori (P50T strain) produced by Pacific Biosciences (PacBio) HiFi sequencing, and highly contiguous and complete genome assemblies of two other silkworm strains by Oxford Nanopore Technologies (ONT) or PacBio continuous long-reads (CLR) that were unrepresented in the public database. Assembly quality was evaluated by use of BUSCO, Inspector, and EagleC. It is necessary to choose an appropriate assembler for draft genome construction, especially for low-depth datasets. For PacBio CLR and ONT sequencing, NextDenovo is superior. For PacBio HiFi sequencing, hifiasm is better. Quality assessment is essential for genome assembly and can provide better and more accurate results. For chromosome-level high-quality genome construction, we recommend using 3D-DNA with EagleC evaluation. Our study references how to obtain and evaluate high-quality genome assemblies, and is a resource for biological control, comparative genomics, and evolutionary studies of Lepidopteran pests and related species.
Project description:BackgroundSequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample.ResultsHere, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements.ConclusionsThe 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.