Project description:This study aimed to determine the association between severity of autism spectrum disorder (ASD) and cognitive, behavioral, and molecular measures in individuals with fragile X syndrome (FXS). Study inclusion criteria included individuals with FXS and (1) age 6-40 years, (2) full-scale IQ < 84, and (3) language ≥3-word phrases. ASD symptom severity was determined by Autism Diagnostic Observation Schedule-2 (ADOS-2). Other measures identified non-verbal IQ, adaptive skills, and aberrant behaviors. Molecular measures included blood FMR1 and CYFIP1 mRNA levels, FMRP and MMP9 levels. Analysis of variance (ANOVA) and Spearman's correlations were used to compare ASD severity groups. Data from 54 individuals was included with no/mild (N = 7), moderate (N = 18), and severe (N = 29) ASD. Individuals with high ASD severity had lower adaptive behavior scores (47.48 ± 17.49) than the no/mild group (69.00 ± 20.45, p = 0.0366); they also had more challenging behaviors, lethargy, and stereotypic behaviors. CYFIP1 mRNA expression levels positively correlated with the ADOS-2 comparison score(r2 = 0.33, p = 0.0349), with no significant correlations with other molecular markers. In conclusion, autism symptom severity is associated with more adverse cognitive and adaptive skills and specific behaviors in FXS, whereas CYFIP1 mRNA expression levels may be a potential biomarker for severity of ASD in FXS.
Project description:Individuals with fragile X syndrome (FXS) exhibit frontal lobe-associated cognitive and behavioral deficits, including impaired general cognitive abilities, perseverative behaviors, and social difficulties. Neural signals related to these functions are communicated through frontostriatal circuits, which connect with distinct regions of the caudate nucleus (CN). Enlargement of the CN is the most robust and reproduced neuroanatomical abnormality in FXS, but very little is known on how this affects behavioral/cognitive outcomes in this condition. Here, we investigated topography within focal regions of the CN associated with prefrontal circuitry and its link with aberrant behavior and intellect in FXS. Imaging data were acquired from 48 individuals with FXS, 28 IQ-matched controls without FXS (IQ-CTL), and 36 typically developing controls (TD-CTL). Of the total participant count, cognitive and behavioral assessment data were obtained from 44 individuals with FXS and 27 participants in the IQ-CTL group. CN volume and topography were compared between groups. Correlations were performed between CN topography and cognitive as well as behavioral measures within FXS and IQ-CTL groups. As expected, the FXS group had larger CN compared with both IQ-CTL and TD-CTL groups. Correlations between focal CN topography and frontal lobe-associated cognitive and behavioral deficits in the FXS group supported the hypothesis that CN enlargement is related to abnormal orbitofrontal-caudate and dorsolateral-caudate circuitry in FXS. These findings deepen our understanding of neuroanatomical mechanisms underlying cognitive-behavioral problems in FXS and hold promise for informing future behavioral and psychopharmacological interventions targeting specific neural pathways.
Project description:BackgroundFragile X syndrome (FXS) is an X chromosome-linked genetic disorder characterized by increased risk for behavioral, social, and neurocognitive deficits. Because males express a more severe phenotype than females, research has focused largely on identifying neural abnormalities in all-male or both-sex populations with FXS. Therefore, very little is known about the neural alterations that contribute to cognitive behavioral symptoms in females with FXS. This cross-sectional study aimed to elucidate the large-scale resting-state brain networks associated with the multidomain cognitive behavioral phenotype in girls with FXS.MethodsWe recruited 38 girls with full-mutation FXS (11.58 ± 3.15 years) and 32 girls without FXS (11.66 ± 2.27 years). Both groups were matched on age, verbal IQ, and multidomain cognitive behavioral symptoms. Resting-state functional magnetic resonance imaging data were collected.ResultsCompared with the control group, girls with FXS showed significantly greater resting-state functional connectivity of the default mode network, lower nodal strength at the right middle temporal gyrus, stronger nodal strength at the left caudate, and higher global efficiency of the default mode network. These aberrant brain network characteristics map directly onto the cognitive behavioral symptoms commonly observed in girls with FXS. An exploratory analysis suggested that brain network patterns at a prior time point (time 1) were predictive of the longitudinal development of participants' multidomain cognitive behavioral symptoms.ConclusionsThese findings represent the first examination of large-scale brain network alterations in a large sample of girls with FXS, expanding our knowledge of potential neural mechanisms underlying the development of cognitive behavioral symptoms in girls with FXS.
Project description:BackgroundThe majority of individuals with fragile X syndrome (FXS) have intellectual disability, behavioral problems, autism, and language deficits. IQ typically declines with age in boys with the full mutation. The results of preclinical studies demonstrated that metformin, a biguanide used to treat type 2 diabetes, rescues multiple phenotypes of FXS in both Drosophila and mouse models. Preliminary studies of patients with FXS demonstrated improvements in behavior.MethodsHere, we present two cases of individuals who have been treated with metformin clinically for one year.ResultsBoth patients demonstrated significant cognitive and behavioral improvements. They also improved eating habits and normalization of their weight percentiles.ConclusionMetformin may be a candidate drug for treatment of several types of symptoms in individuals with FXS.
Project description:Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted as highly heritable, there is no genetic cure at this time. Autism is shown to be linked to several genes and is a feature of some complex genetic disorders, including fragile X syndrome (FXS), fragile X premutation involvement, tuberous sclerosis and Rett syndrome. The term autism spectrum disorders (ASDs) covers autism, Asperger syndrome and pervasive developmental disorders (PDD-NOS) and the etiologies are heterogeneous. In recent years, targeted treatments have been developed for several disorders that have a known specific genetic cause leading to autism. Since there are significant molecular and neurobiological overlaps among disorders, targeted treatments developed for a specific disorder may be helpful in ASD of unknown etiology. Examples of this are two drug classes developed to treat FXS, Arbaclofen, a GABA(B) agonist, and mGluR5 antagonists, and both may be helpful in autism without FXS. The mGluR5 antagonists are also likely to have a benefit in the aging problems of fragile X premutation carriers, the fragile X -associated tremor ataxia syndrome (FXTAS) and the Parkinsonism that can occur in aging patients with fragile X syndrome. Targeted treatments in FXS which has a well known genetic etiology may lead to new targeted treatments in autism.
Project description:Mosaicism in fragile X syndrome (FXS) refers to two different FMR1 allele variations: size mosaicism represents different numbers of CGG repeats between the two alleles, such that in addition to a full mutation allele there is an allele in the normal or premutation range of CGG repeats, while methylation mosaicism indicates whether a full-mutation allele is fully or partially methylated. The present study explored the association between mosaicism type and cognitive and behavioral functioning in a large sample of males 3 years and older (n = 487) with FXS, participating in the Fragile X Online Registry with Accessible Research Database. Participants with methylation mosaicism were less severely cognitively affected as indicated by a less severe intellectual disability rating, higher intelligence quotient and adaptive behavior score, and lower social impairment score. In contrast, the presence of size mosaicism was not significantly associated with better cognitive and behavioral outcomes than full mutation. Our findings suggest that methylation mosaicism is associated with better cognitive functioning and adaptive behavior and less social impairment. Further research could assess to what extent these cognitive and behavioral differences depend on molecular diagnostic methods and the impact of mosaicism on prognosis of individuals with FXS.
Project description:BackgroundAutism is a behavioral disorder with impaired social interaction, communication, and repetitive and stereotypic behaviors. About 5-10 % of individuals with autism have 'secondary' autism in which an environmental agent, chromosome abnormality, or single gene disorder can be identified. Ninety percent have idiopathic autism and a major gene has not yet been identified. We have assessed the incidence of chromosome abnormalities and Fragile X syndrome in a population of autistic patients referred to our laboratory.MethodsData was analyzed from 433 patients with autistic traits tested using chromosome analysis and/or fluorescence in situ hybridization (FISH) and/or molecular testing for fragile X syndrome by Southern and PCR methods.ResultsThe median age was 4 years. Sex ratio was 4.5 males to 1 female [354:79]. A chromosome (cs) abnormality was found in 14/421 [3.33 %] cases. The aberrations were: 4/14 [28%] supernumerary markers; 4/14 [28%] deletions; 1/14 [7%] duplication; 3/14 [21%] inversions; 2/14 [14%] translocations. FISH was performed on 23 cases for reasons other than to characterize a previously identified cytogenetic abnormality. All 23 cases were negative. Fragile-X testing by Southern blots and PCR analysis found 7/316 [2.2 %] with an abnormal result. The mutations detected were: a full mutation (fM) and abnormal methylation in 3 [43 %], mosaic mutations with partial methylation of variable clinical significance in 3 [43%] and a permutation carrier [14%]. The frequency of chromosome and fragile-X abnormalities appears to be within the range in reported surveys (cs 4.8-1.7%, FRAX 2-4%). Limitations of our retrospective study include paucity of behavioral diagnostic information, and a specific clinical criterion for testing.ConclusionsTwenty-eight percent of chromosome abnormalities detected in our study were subtle; therefore a high resolution cytogenetic study with a scrutiny of 15q11.2q13, 2q37 and Xp23.3 region should be standard practice when the indication is autism. The higher incidence of mosaic fragile-X mutations with partial methylation compared to FRAXA positive population [50% vs 15-40%] suggests that faint bands and variations in the Southern band pattern may occur in autistic patients.
Project description:Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.
Project description:Breaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1). Further, to investigate the impact of our therapeutic strategy on neuronal plasticity we perform long-term potentiation recordings and high-resolution electron microscopy. We show that central amygdala-targeted delivery of TIMP-1 designer nanoparticles reverses impaired cognition in Fmr1 knockouts, while having no impact on deficits of social behavior, hence corroborating symptom-specificity of the proposed approach. Moreover, we elucidate the neural correlates of the highly specific behavioral rescue by showing that the applied therapeutic intervention restores functional synaptic plasticity and ultrastructure of neurons in the central amygdala. Thus, we present a targeted, symptom-specific and mechanism-based strategy to remedy cognitive deficits in Fragile X syndrome.
Project description:ObjectivePrevious research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific to the amygdala, and whether it is specific to ASD (or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown.MethodsLongitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans).ResultsInfants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months the ASD group had significantly larger amygdala volume (Cohen's d=0.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24 months when the infants were diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d=2.12), compared with all other groups, which was significantly associated with greater repetitive behaviors.ConclusionsThis is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis.