Project description:BackgroundIncreasing evidence supports a critical role of chronic inflammation in intracranial aneurysm (IA). Understanding how the immunological alterations in IA provides opportunities for targeted treatment. However, there is a lack of comprehensive and detailed characterization of the changes in circulating immune cells in IA.ObjectiveTo perform a comprehensive and detailed characterization of the changes in circulating immune cells in patients with IA.MethodsPeripheral blood mononuclear cell samples from IA patients (n = 26) and age-and sex-matched healthy controls (HCs, n = 20) were analyzed using high dimensional mass cytometry, and the frequency and phenotype of immune cell subtypes were assessed.ResultsWe identified 28 cell clusters and found that the immune signature of IA consists of cluster changes. IA patients exhibited dysfunction of immunity, with dysregulation of CD4+ T-cell clusters, increased B cells and monocytes, and decreased CD8+ T cells, DNT cells, and DPT cells. Moreover, compared with findings in HC, IA was associated with enhanced lymphocyte and monocyte immune activation, with a higher expression of HLA-DR, CXCR3, and CX3CR1. In addition, the expression of TLR4, p-STAT3, and the exhaustion marker PD1 was increased in T cells, B cells, and NK cells in IA patients.ConclusionsOur data provide an overview of the circulating immune cell landscape of IA patients, and reveal that the dysfunction of circulating immunity may play a potential role in the development of IA.
Project description:ObjectivesOur study aims to find the more practical and powerful method to predict intracranial aneurysm (IA) rupture through verification of predictive power of different models.MethodsClinical and imaging data of 576 patients with IAs including 192 ruptured IAs and matched 384 unruptured IAs was retrospectively analyzed. Radiomics features derived from computed tomography angiography (CTA) images were selected by t-test and Elastic-Net regression. A radiomics score (radscore) was developed based on the optimal radiomics features. Inflammatory markers were selected by multivariate regression. And then 4 models including the radscore, inflammatory, clinical and clinical-radscore models (C-R model) were built. The receiver operating characteristic curve (ROC) was performed to evaluate the performance of each model, PHASES and ELAPSS. The nomogram visualizing the C-R model was constructed to predict the risk of IA rupture.ResultsFive inflammatory features, 2 radiological characteristics and 7 radiomics features were significantly associated with IA rupture. The areas under ROCs of the radscore, inflammatory, clinical and C-R models were 0.814, 0.935, 0.970 and 0.975 in the training cohort and 0.805, 0.927, 0.952 and 0.962 in the validation cohort, respectively.ConclusionThe inflammatory model performs particularly well in predicting the risk of IA rupture, and its predictive power is further improved by combining with radiological and radiomics features and the C-R model performs the best. The C-R nomogram is a more stable and effective tool than PHASES and ELAPSS for individually predicting the risk of rupture for patients with IA.
Project description:Evidence has proved that intracranial aneurysm (IA) formation and rupture might be closely related to inflammatory response and oxidative stress. Our objective was to evaluate the potential of CD36 and glutathione (GSH) as biomarkers for IA. In this study, the enzyme-linked immunosorbent assay was used to measure the plasma levels of CD36 and GSH in 30 IA patients and 30 healthy controls. Then, correlation analysis, receiver operating characteristic (ROC) curve, and logistic regression analysis were performed. The results showed that the plasma level of CD36 in IA patients was significantly higher than that in the control group (P < 0.0001), and plasma GSH was significantly lower compared with that in the control group (P < 0.0001). ROC analysis showed that CD36 and GSH had high sensitivity (90.0 and 96.6%) and specificity (96.6 and 86.6%) for IA diagnosis. The combined sensitivity and specificity achieved were 100 and 100%, respectively. The plasma levels of CD36 and GSH did not show a significant correlation with age, the Glasgow Coma Scale, Hunter-Hess score, aneurysm size, aneurysm height, aneurysm neck, and aspect ratio. The AUC of the logistic regression model based on CD36 and GSH was 0.505. Our results suggested that the combination of plasma CD36 and GSH could serve as potential biomarkers for IA rupture.
Project description:In the present study we aimed to investigate the systemic response to a rupture of intracranial aneurysms by an analysis of global gene expression profiles in peripheral blood cells. In addition, we sought to determine whether this approach could provide biomarkers related to clinical status of subarachnoid hemorrhage patients.
Project description:Spontaneous aneurysm regression is a rare phenomenon. We present the interesting case of a 54-year-old woman who was admitted with a Hunt/Hess grade IV, Fisher grade III subarachnoid hemorrhage and multiple intracranial aneurysms. She was treated with coiling of the largest paraclinoid aneurysm and placement of a flow diverting pipeline embolization device that covered all internal carotid artery (ICA) aneurysms. A follow-up angiogram at 6 months showed remodeling of the ICA with complete obliteration of all treated aneurysms. A distant, untreated, right frontal M2 aneurysm regressed spontaneously, after the flow was diverted away from it with the stent. The literature is reviewed, and potential pathophysiological mechanisms leading to aneurysm regression are discussed.
Project description:Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.
Project description:ObjectiveRebleeding is recognized as the main cause of mortality after intracranial aneurysm rupture. Though timely intervention can prevent poor prognosis, there is no agreement on the surgical priority and choosing medical treatment for a short period after rupture. The aim of this study was to investigate the risk factors related to the rebleeding after admission and establish predicting models for better clinical decision-making.MethodsThe patients with ruptured intracranial aneurysms (RIAs) between January 2018 and September 2020 were reviewed. All patients fell to the primary and the validation cohort by January 2020. The hemodynamic parameters were determined through the computational fluid dynamics simulation. Cox regression analysis was conducted to identify the risk factors of rebleeding. Based on the independent risk factors, nomogram models were built, and their predicting accuracy was assessed by using the area under the curves (AUCs).ResultA total of 577 patients with RIAs were enrolled in this present study, 86 patients of them were identified as undergoing rebleeding after admission. Thirteen parameters were identified as significantly different between stable and rebleeding aneurysms in the primary cohort. Cox regression analysis demonstrated that six parameters, including hypertension [hazard ratio (HR), 2.54; P = 0.044], bifurcation site (HR, 1.95; P = 0.013), irregular shape (HR, 4.22; P = 0.002), aspect ratio (HR, 12.91; P < 0.001), normalized wall shear stress average (HR, 0.16; P = 0.002), and oscillatory stress index (HR, 1.14; P < 0.001) were independent risk factors related to the rebleeding after admission. Two nomograms were established, the nomogram including clinical, morphological, and hemodynamic features (CMH nomogram) had the highest predicting accuracy (AUC, 0.92), followed by the nomogram including clinical and morphological features (CM nomogram; AUC, 0.83), ELAPSS score (AUC, 0.61), and PHASES score (AUC, 0.54). The calibration curve for the probability of rebleeding showed good agreement between prediction by nomograms and actual observation. In the validation cohort, the discrimination of the CMH nomogram was superior to the other models (AUC, 0.93 vs. 0.86, 0.71 and 0.48).ConclusionWe presented two nomogram models, named CMH nomogram and CM nomogram, which could assist in identifying the RIAs with high risk of rebleeding.
Project description:Submitral aneurysm is a rare entity, with around few hundred cases reported till date. Presentation can be varied. We describe here a case of submitral aneurysm in a young male with rupture into the left atrium cavity.
Project description:The primary aim of the present study was to identify differences on the transcription level between ruptured and unruptured intracranial aneurysms as well as normal intracranial arteries in human. Keywords: Expression profiling by array
Project description:ObjectiveThunderclap-like severe headache or consciousness disturbance is the common "typical" clinical presentation after aneurysmal subarachnoid hemorrhage (aSAH); however, a slowly developing "atypical" clinical pattern, with mild headache, vomiting, or dizziness, is frequently noted in elderly patients. The aim of this study was to evaluate the clinical characteristics of this "atypical" subgroup, as well as related factors associated with the presence of these mild symptoms.MethodsThe data of 176 elderly patients (≥70 years old) with ruptured intracranial aneurysms (IAs) treated at our center from January 2016 to January 2020 were retrospectively collected and analyzed. The patients were divided into "typical" and "atypical" groups based on their initial and development of clinical symptoms after the diagnosis of aSAH. Intergroup differences were analyzed, and factors related to the presence of these two clinical patterns were explored through multiple logistic regression analyses.ResultsDespite significant admission delay (P < 0.001) caused by mild initial symptoms with slow development, patients in the "atypical" group achieved better clinical prognosis, as indicated by a significantly higher favourable outcome ratio and lower death rate upon discharge and at different time points during the 1-year follow-up, than the "typical" group (P < 0.05). Multiple logistic regression analysis revealed that modified Fisher grade III-IV (OR = 11.182, P = 0.003), brain atrophy (OR = 10.010, P = 0.001), a larger lesion diameter (OR = 1.287, P < 0.001) and current smoking (OR = 5.728, P < 0.001) were independently associated with the presence of "typical" symptoms. Aneurysms with wide necks (OR = 0.013, P < 0.001) were independently associated with the presence of "atypical" symptoms.Conclusions"Atypical" presentations, with mild clinical symptoms and slow development, were commonly recorded in elderly patients after the onset of aSAH. Despite the prolonged admission delay, these "atypical" patients achieved better clinical outcomes than those with "typical" symptoms. Modified Fisher grade (III-IV), current smoking, brain atrophy and larger lesion diameter were factors predictive of "typical" symptoms, while aneurysms with wide necks were independently associated with "atypical" symptoms.