Unknown

Dataset Information

0

Bile acid metabolites enhance expression of cathelicidin antimicrobial peptide in airway epithelium through activation of the TGR5-ERK1/2 pathway.


ABSTRACT: Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.

SUBMITTER: Myszor IT 

PROVIDER: S-EPMC10957955 | biostudies-literature | 2024 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bile acid metabolites enhance expression of cathelicidin antimicrobial peptide in airway epithelium through activation of the TGR5-ERK1/2 pathway.

Myszor Iwona T IT   Lapka Kornelia K   Hermannsson Kristjan K   Rekha Rokeya Sultana RS   Bergman Peter P   Gudmundsson Gudmundur Hrafn GH  

Scientific reports 20240321 1


Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the e  ...[more]

Similar Datasets

| S-EPMC9233297 | biostudies-literature
2014-08-01 | E-GEOD-49472 | biostudies-arrayexpress
| S-EPMC7904761 | biostudies-literature
2014-08-01 | GSE49472 | GEO
| S-EPMC9821026 | biostudies-literature
| S-EPMC6381635 | biostudies-literature
| S-EPMC8063489 | biostudies-literature
| S-EPMC10647698 | biostudies-literature
| S-EPMC9738883 | biostudies-literature
| S-EPMC11785927 | biostudies-literature