Project description:Objective:To determine the influence of the home bleaching agent, Opalescence PF, on the surface roughness and microhardness of glazed glassy matrix CAD-CAM ceramics. Materials and Methods. The 28 sintered leucite- and lithium disilicate-reinforced ceramic specimens (IPS Empress CAD and IPS e.max CAD) were divided into control and bleached groups. The home bleaching agent was applied to specimens of bleached groups for 7 days. The surface roughness and microhardness of all specimens were measured. A scanning electron microscope was used to evaluate the surface properties. The data were statistically analyzed by two-way ANOVA. Results:The control e.max CAD showed the lowest surface roughness values. For both Empress and e.max CAD, surface roughness was significantly higher for the bleached group (p < 0.05). No significant differences in microhardness were observed. Conclusions:According to our study, patients should be careful when using home bleaching agents because whitening agents can affect the mechanical properties of full ceramic restorations like e.max CAD and Empress CAD. Ceramic polishing may be required in clinical situations where ceramic restorations are accidentally exposed to bleaching gels.
Project description:This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Project description:To study the relationship between the glazed pottery from southern China and the lead-glazed pottery in northern China in the Han Dynasty (202BC-220AD), 34 samples unearthed from Shangyu(), Zhejiang Province have been studied by LA-ICP-AES, SEM/EDS and XRD. The results showed that these samples included the typical lead-glazed pottery, the proto-porcelain and the glazed pottery using both lead and calcium as glaze fluxing agents. Previously, the lead-glazed pottery type was considered as the main northern products during the Han dynasty while the calcium-glazed pottery type or the proto-porcelain was the representative of the south of China. However, apart from the two typical types above, a new variety of glaze categorized as the calcium-lead glaze was discovered in the samples from Shangyu. This indicates that there were technology exchanges and amalgamation of lead-glaze and calcium-glaze between the south and the north during the Han Dynasty. As a result, a new type of glazed potteries with both features was created, which had a more beautiful appearance than the proto-porcelain but perhaps had some undesirable aspects. The manufacturing process of the new variety might also lay foundations for the invention of celadon.
Project description:This article provides and describes a database containing three different variables for medical technology. To capture the various dimensions of medical technology, the set of variables covers not only drugs and devices but also general advances in medical knowledge. Information was extracted and processed from the Drug Canada Product Database, and the National Institute of Health. Variables are extracted from 1997 to 2017 and they represent global proxies. The provided data is relevant for healthcare research in various fields of study.
Project description:The goal of the microarray experiment was to do a head-to-head comparison of the U1 Adaptor technology with siRNA in terms of specificity at the genome-wide level. U1 Adaptors represent a novel gene silencing method that employs a mechanism of action distinct from antisense and RNA interference (RNAi). The U1 Adaptor is a bifunctional oligonucleotide having a “Target Domain” that is complementary to a site in the target gene's terminal exon and a “U1 Domain” that binds to the U1 small nuclear RNA (snRNA) component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits 3' end processing (i.e., polyA tail addition) leading to degradation of that RNA species within the nucleus thereby reducing mRNA levels. We demonstrate that U1 Adaptors can specifically inhibit both reporter and endogenous genes. Further, targeting the same gene either with multiple U1 Adaptors or with U1 Adaptors and small interfering RNAs (siRNAs), strongly enhances gene silencing, the latter as predicted from their distinct mechanisms of action. Such combinatorial targeting requires lower amounts of oligonucleotides to achieve potent silencing.
Project description:Despite the removal of lead from gasoline in 1997, elevated blood lead levels (BLLs) > 5 µg/dL are still detectable in children living in Mexico City. The use of lead-glazed ceramics may explain these persistent exposure levels. Mexico lacks a national surveillance program for BLL, but temporal trends can be derived from epidemiological studies. With this approach, we leveraged a series of birth cohorts to report BLL trends from 1987 to 2002 and expanded our analysis to 2015. Data were from 1?5-year-old children from five Mexico City cohorts followed between 1988 and 2015. BLLs are reported on 1963 children, who contributed 4975 BLLs. We estimated the trend of mean BLL, which decreased from 15.7 µg/dL in 1988, to 7.8 µg/dL in 1998 (a year after the total ban of lead in gasoline), to 1.96 µg/dL in 2015. The proportion of BLL ? 5 µg/dL decreased from 92% (1988?1998) to 8% (2008?2015). The use of lead-glazed ceramics was associated with an 11% increase in BLLs throughout the study period. Replacing lead-based glazes in traditional ceramics may be the key to further reducing exposure, but this presents challenges, as it involves a cultural tradition deeply rooted in Mexico. In addition, the creation of a rigorous, standardized, and on-going surveillance program of BLL is necessary for identifying vulnerable populations.
Project description:Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed.
Project description:This data article contains an atlas of paste fabrics and supplemental paste compositional data generated from Late Middle Preclassic-period ceramics at the Maya site of Holtun, Guatemala. The data include maps showing locations of archeological contexts, excavation profiles, photographs and photomicrographs of sherds and paste fabrics, and compositional data produced by Neutron Activation Analysis (NAA) at the Research Reactor, University of Missouri (MURR). The NAA data include a biplot and table of canonical discriminant analyses, Mahalonobis distance calculations, and Euclidian distance searches between the samples.
Project description:Ceramic Al4O4C, which has few active functions, has been used as an additive in carbon-containing refractory materials to improve their oxidation resistance and thermal properties. Herein, the crystal and electronic structures of this novel material were systematically investigated for opto-electrical applications, which revealed interesting fluorescence features via photoluminescence (PL) and cathode luminescence (CL). When a 325 nm laser was focused on one end of a single Al4O4C needle, the entire needle was illuminated by the blue emission, which implies that this material exhibits excellent waveguide properties. Interestingly, the thin end exhibited the highest light intensity even though the excited region was located at the thick end. We believe the reason for this observed behaviour is related to the excellent waveguide behaviour as well as to the needle shape, which induces this intriguing blue-light convergence effect. Ab initio calculations demonstrated that the emission light emanates from the interband transition.