Project description:Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials.
Project description:Silicon, an attractive anode material, suffers fast capacity fading due to the electrical isolation from massive volumetric expansion upon cycling. However, it holds a high theoretical capacity and low operation voltage in its practical application. In this study, a new water-based binder, MXene clay/hollow core-shell acrylate composite, was synthesized through an in situ emulsion polymerization technique to alleviate the fast capacity fading of the silicon anode efficiently. The efficient introduction of conductive MXene clay and the hollow core-shell structure, favorable to electron and ion transport in silicon-based electrodes, gives a novel conceptual design of the binder material. Such a strategy could alleviate electrical isolation after cycling and promises better electrochemical performance of the high-capacity anodes. The effect of the MXene introduction and hollow core-shell on the binder performance is thoroughly investigated using various characterization tools by comparison with no MXene-containing, core-shell acrylate, and commercial styrene-butadiene latex binders. Consequently, the silicon-based electrode containing the MXene clay/hollow core-shell acrylate binder exhibits a high capacity retention of 1351 mAh g-1 at 0.5C after 100 cycles and good rate capability of over 1100 mAh g-1 at 5C.
Project description:Precise design of hollow nanostructures can be realized via various approaches developed in the last two decades, endowing nanomaterials with unique structures and outstanding performances, showing their usefulness in a broad range of fields. Herein, we demonstrate the formation of SnO2@SiO2 hollow nanostructures, for the first time, by interaction between liquid state Sn cores and SiO2 shell structures inside Sn@SiO2 core-shell nanoparticles with real-time observation via in situ transmission electron microscopy (TEM). Based on the in situ results, designed transformation of the nanoparticle structure from core-shell Sn@SiO2 to yolk-shell Sn@SiO2 and hollow SnO2@SiO2 is demonstrated, showing the controllable structure of core-shell Sn@SiO2 nanoparticles via fixing liquid-state Sn inside a SiO2 shell which has a certain Sn containing capacity. The present approach expands the toolbox for the design and preparation of yolk-shell and hollow nanostructures, thus providing us with a new strategy for fabrication of more complicated nanostructures.
Project description:The development of efficient heterogeneous catalysts for one-pot tandem/cascade synthesis of imines remains meaningful and challenging. Herein, we constructed an Au/MOF catalyst featured hollow and double MOF shell nanostructure. Owing to its structural merits and acid-basic nature, the as-synthesized Void|(Au)ZIF-8|ZIF-8 catalyst exhibited an enhanced synergistically catalytic performance for tandem catalytic synthesis of imines from benzyl alcohol and aniline under air atmosphere and solvent-free condition. Its 170.16 h-1 of turnover frequency (TOF) was 2.5 times higher than that of the reported catalyst with the highest TOF value.
Project description:Hollow and concave nanocrystals find applications in many fields, and their fabrication can follow different possible mechanisms. We report a new route to these nanostructures that exploits the oxidation of Cu(2-x)Se/Cu(2-x)S core/shell nanocrystals with various etchants. Even though the Cu(2-x)Se core is encased in a thick Cu(2-x)S shell, the initial effect of oxidation is the creation of a void in the core. This is rationalized in terms of diffusion of Cu(+) ions and electrons from the core to the shell (and from there to the solution). Differently from the classical Kirkendall effect, which entails an imbalance between in-diffusion and out-diffusion of two different species across an interface, the present mechanism can be considered as a limiting case of such effect and is triggered by the stronger tendency of Cu(2-x)Se over Cu(2-x)S toward oxidation and by fast Cu(+) diffusion in copper chalcogenides. As the oxidation progresses, expansion of the inner void erodes the entire Cu(2-x)Se core, accompanied by etching and partial collapse of the shell, yielding Cu(2-x)S(y)Se(1-y) concave particles.
Project description:3D cellular spheroids offer more biomimetic microenvironments than conventional 2D cell culture technologies, which has proven value for many tissue engineering applications. Despite beneficiary effects of 3D cell culture, clinical translation of spheroid tissue engineering is challenged by limited scalability of current spheroid formation methods. Although recent adoption of droplet microfluidics can provide a continuous production process, use of oils and surfactants, generally low throughput, and requirement of additional biofabrication steps hinder clinical translation of spheroid culture. Here, the use of clean (e.g., oil-free and surfactant-free), ultra-high throughput (e.g., 8.5 mL min-1 , 10 000 spheroids s-1 ), single-step, in-air microfluidic biofabrication of spheroid forming compartmentalized hydrogels is reported. This novel technique can reliably produce 1D fibers, 2D planes, and 3D volumes compartmentalized hydrogel constructs, which each allows for distinct (an)isotropic orientation of hollow spheroid-forming compartments. Spheroids produced within ink-jet bioprinted compartmentalized hydrogels outperform 2D cell cultures in terms of chondrogenic behavior. Moreover, the cellular spheroids can be harvested from compartmentalized hydrogels and used to build shape-stable centimeter-sized biomaterial-free living tissues in a bottom-up manner. Consequently, it is anticipated that in-air microfluidic production of spheroid-forming compartmentalized hydrogels can advance production and use of cellular spheroids for various biomedical applications.
Project description:Inflammation following joint trauma contributes to cartilage degradation and progression of post traumatic osteoarthritis (PTOA). Therefore, drug delivery vehicles that deliver effective anti-inflammatory treatments have the potential to prevent PTOA. We have developed solid and hollow, thermoresponsive nanoparticles for the controlled release of our anti-inflammatory MK2-inhibiting (MK2i) peptide for intra-articular injection to halt inflammation that contributes to the advancement of PTOA. This system exploits the thermosensitive characteristic of N-isopropyl acrylamide (NIPAm) to transition phases when passing through its lower critical solution temperature (LCST). The nanoparticles (NPs) swell below the LCST and constrict above it. Non-crosslinked poly(NIPAm) (pNIPAm), held above its LCST, formed hydrophobic cores around which shells composed of NIPAm, degradable crosslinker N, N'-bis (acryloyl) cystamine (BAC), sulfated 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and acrylic acid (AAc) were polymerized. Removal of the non-crosslinked pNIPAm cores via diffusion produced thermosensitive, degradable nanoparticles with low density, or hollow, cores. The data presented here revealed low-density, termed hollow, nanoparticles (hNPs) load and release significantly more MK2i than solid nanoparticles (sNPs). Furthermore, drug loading below the LCST of NIPAm results in roughly 2.5 times more therapeutic encapsulation compared to loading particles in their constricted state. Hollow nanoparticles increase drug loading compared to solid nanoparticles, are taken up into chondrocytes within 24 h, cleared from the cells within 6 days, significantly decrease the secretion of the proinflammatory cytokine IL-6, and, via intra-articular injection, are successfully delivered into the joint space of rats. The peptide loaded nanoparticles provide a reproducible platform for intra-articular delivery of therapeutics.
Project description:Bacterial flagella, protein nanotubes (∼15 nm wide) detached from Salmonella typhimurium bacteria, are used to template the formation of titania/silica core/shell double-layered nanotubes in aqueous solution under ambient conditions through a sol-gel process. The thickness of each layer is tunable by varying the concentration of precursor solutions or reaction times. Upon heating, the flagella can be removed and the inner titania layer can be transformed into a nanocrystalline layer supported by the outer silica sheath. Nanotubes with different inner pore diameters and morphologies could be templated by other bionanofibers such as M13 phage and bacterial pili. This work shows that bionanofibers can be used as a universal biotemplate for the green synthesis of nanotubes with tunable wall thicknesses.
Project description:Iron oxides are potential electrode materials for lithium-ion batteries because of their high theoretical capacities, low cost, rich resources, and their non-polluting properties. However, iron oxides demonstrate large volume expansion during the lithium intercalation process, resulting in the electrode material being crushed, which always results in poor cycle performance. In this paper, to solve the above problem, iron oxide/carbon nanocomposites with a hollow core-shell structure were designed. Firstly, an Fe2O3@polydopamine nanocomposite was prepared using an Fe2O3 nanocube and dopamine hydrochloride as precursors. Secondly, an Fe3O4@N-doped C composite was obtained by means of further carbonization treatment. Finally, Fe3O4@void@N-Doped C-x composites with core-shell structures with different void sizes were obtained by means of Fe3O4 etching. The effect of the etching time on the void size was studied. The electrochemical properties of the composites when used as lithium-ion battery materials were studied in more detail. The results showed that the sample that was obtained via etching for 5 h using 2 mol L-1 HCl solution at 30 °C demonstrated better electrochemical performance. The discharge capacity of the Fe3O4@void@N-Doped C-5 was able to reach up to 1222 mA g h-1 under 200 mA g-1 after 100 cycles.
Project description:Herein, we describe a one-step method for synthesizing cationic acrylate-based core-shell latex (CACS latex), which is used to prepare architectural coatings with excellent antimicrobial properties. Firstly, a polymerizable water-soluble quaternary ammonium salt (QAS-BN) was synthesized using 2-(Dimethylamine) ethyl methacrylate (DMAEMA) and benzyl bromide by the Hoffman alkylation reaction. Then QAS-BN, butyl acrylate (BA), methyl methacrylate (MMA), and vinyltriethoxysilane (VTES) as reactants and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA) as a water-soluble initiator were used to synthesize the CACS latex. The effect of the QAS-BN dosage on the properties of the emulsion and latex film was systematically investigated. The TGA results showed that using QAS-BN reduced the latex film's initial degradation temperature but improved its thermal stability. In the transmission electron microscopy (TEM) photographs, the self-stratification of latex particles with a high dosage of QAS-BN was observed, forming a core-shell structure of latex particles. The DSC, TGA, XPS, SEM, and performance tests confirmed the core-shell structure of the latex particles. The relationship between the formation of the core-shell structure and the content of QAS-BN was proved. The formation of the core-shell structure was due to the preferential reaction of water-soluble monomers in the aqueous phase, which led to the aggregation of hydrophilic groups, resulting in the formation of soft-core and hard-shell latex particles. However, the water resistance of the films formed by CACS latex was greatly reduced. We introduced a p-chloromethyl styrene and n-hexane diamine (p-CMS/EDA) crosslinking system, effectively improving the water resistance in this study. Finally, the antimicrobial coating was prepared with a CACS emulsion of 7 wt.% QAS-BN and 2 wt.% p-CMS/EDA. The antibacterial activity rates of this antimicrobial coating against E. coli and S. aureus were 99.99%. The antiviral activity rates against H3N2, HCoV-229E, and EV71 were 99.4%, 99.2%, and 97.9%, respectively. This study provides a novel idea for the morphological design of latex particles. A new architectural coating with broad-spectrum antimicrobial properties was obtained, which has important public health and safety applications.