Project description:Neurophysiological studies of covert visual attention in monkeys have emphasized the modulation of sensory neural responses in the visual cortex. At the same time, electrophysiological correlates of attention have been reported in other cortical and subcortical structures, and recent fMRI studies have identified regions across the brain modulated by attention. Here we used fMRI in two monkeys performing covert attention tasks to reproduce and extend these findings in order to help establish a more complete list of brain structures involved in the control of attention. As expected from previous studies, we found attention-related modulation in frontal, parietal and visual cortical areas as well as the superior colliculus and pulvinar. We also found significant attention-related modulation in cortical regions not traditionally linked to attention - mid-STS areas (anterior FST and parts of IPa, PGa, TPO), as well as the caudate nucleus. A control experiment using a second-order orientation stimulus showed that the observed modulation in a subset of these mid-STS areas did not depend on visual motion. These results identify the mid-STS areas (anterior FST and parts of IPa, PGa, TPO) and caudate nucleus as potentially important brain regions in the control of covert visual attention in monkeys.
Project description:We present a new human-computer interface that is based on decoding of attention through pupillometry. Our method builds on the recent finding that covert visual attention affects the pupillary light response: Your pupil constricts when you covertly (without looking at it) attend to a bright, compared to a dark, stimulus. In our method, participants covertly attend to one of several letters with oscillating brightness. Pupil size reflects the brightness of the selected letter, which allows us-with high accuracy and in real time-to determine which letter the participant intends to select. The performance of our method is comparable to the best covert-attention brain-computer interfaces to date, and has several advantages: no movement other than pupil-size change is required; no physical contact is required (i.e. no electrodes); it is easy to use; and it is reliable. Potential applications include: communication with totally locked-in patients, training of sustained attention, and ultra-secure password input.
Project description:Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
Project description:PurposeExposure to increasing amounts of artificial light during the night may contribute to the high prevalence of reported sleep dysfunction. Release of the sleep hormone melatonin is mediated by the intrinsically photosensitive retinal ganglion cells (ipRGCs). This study sought to investigate whether melatonin level and sleep quality can be modulated by decreasing night-time input to the ipRGCs.MethodsSubjects (ages 17-42, n = 21) wore short wavelength-blocking glasses prior to bedtime for 2 weeks. The ipRGC-mediated post illumination pupil response was measured before and after the experimental period. Stimulation was presented with a ganzfeld stimulator, including one-second and five-seconds of long and short wavelength light, and the pupil was imaged with an infrared camera. Pupil diameter was measured before, during and for 60 s following stimulation, and the six-second and 30 s post illumination pupil response and area under the curve following light offset were determined. Subjects wore an actigraph device for objective measurements of activity, light exposure, and sleep. Saliva samples were collected to assess melatonin content. The Pittsburgh Sleep Quality Index (PSQI) was administered to assess subjective sleep quality.ResultsSubjects wore the blue-blocking glasses 3:57 ± 1:03 h each night. After the experimental period, the pupil showed a slower redilation phase, resulting in a significantly increased 30 s post illumination pupil response to one-second short wavelength light, and decreased area under the curve for one and five-second short wavelength light, when measured at the same time of day as baseline. Night time melatonin increased from 16.1 ± 7.5 pg mL-1 to 25.5 ± 10.7 pg mL-1 (P < 0.01). Objectively measured sleep duration increased 24 min, from 408.7 ± 44.9 to 431.5 ± 42.9 min (P < 0.001). Mean PSQI score improved from 5.6 ± 2.9 to 3.0 ± 2.2.ConclusionsThe use of short wavelength-blocking glasses at night increased subjectively measured sleep quality and objectively measured melatonin levels and sleep duration, presumably as a result of decreased night-time stimulation of ipRGCs. Alterations in the ipRGC-driven pupil response suggest a shift in circadian phase. Results suggest that minimising short wavelength light following sunset may help in regulating sleep patterns.
Project description:PurposeThe intrinsically photosensitive retinal ganglion cells (ipRGCs) signal environmental light, control pupil size and entrain circadian rhythm. There is speculation that ipRGCs may be involved in the protective effects of light exposure in myopia. Here, the ipRGC-driven pupil response was evaluated in children and examined with light exposure and refractive error.MethodsChildren ages 5-15 years participated. Subjects wore an actigraph device prior to the lab visit for objective measures of light exposure and sleep. For pupillometry, the left eye was dilated and presented with stimuli, and the consensual pupil response was measured in the right eye. Pupil measurements were preceded by 5 min dark adaptation. In Experiment 1 (n = 14), 1 s long wavelength light ('red,' 651 nm, 167 cd m-2 ) and 10 increasing intensities of 1 s short wavelength light ('blue,' 456 nm, 0.167-167 cd m-2 ) were presented with a 60 s interstimulus interval. A piecewise two-segment regression was fit to the stimulus response function to determine the functional melanopsin threshold. Pupil responses were analysed with light exposure over the previous 24 h. For Experiment 2 (n = 42), three 1 s red and three 1 s blue alternating stimuli were presented with a 60 s interstimulus interval. Following an additional 5-min dark adaption, the experiment was repeated. Pupil metrics included peak constriction, the 6 s and 30 s post-illumination response (PIPR), early and late area under the curve (AUC). Following pupil measurements, cycloplegic refractive error and axial length were measured.ResultsFor Experiment 1, PIPR metrics demonstrated a graded response to increasing intensity blue stimuli, with a mean functional melanopsin threshold of 6.2 ± 4.5 cd m-2 (range: 0.84-16.7 cd m-2 ). The 6 s PIPR and early AUC were associated with 24-h light exposure for high intensity stimuli (33.3 and 83.3 cd m-2 , p < 0.005 for both). For Experiment 2, there were no associations between pupil metrics and refractive error. The 6 s PIPR and early AUC to blue stimuli were significantly increased for Trial 2 compared to Trial 1.ConclusionsThe ipRGC-driven pupil responses in children were robust and similar to responses previously measured in an adult population. The 6 s PIPR and early AUC to high intensity blue stimuli were associated with previous light exposure. There were no associations between the ipRGC-driven pupil response and refractive status in this cohort.
Project description:We collected and analyzed pupil diameter data from of 7 visually normal participants to compare the maximum pupil constriction (MPC) induced by "Red Only" vs. "Blue+Red" visual stimulation conditions. The "Red Only" condition consisted of red light (640±10 nm) stimuli of variable intensity and duration presented to dark-adapted eyes with pupils at resting state. This condition stimulates the cone-driven activity of the intrinsically photosensitive retinal ganglion cells (ipRGC). The "Blue+Red" condition consisted of the same red light stimulus presented during ongoing blue (470±17 nm) light-induced post-illumination pupil response (PIPR), representing the cone-driven ipRGC activity superimposed on the melanopsin-driven intrinsic activity of the ipRGCs ("The Absence of Attenuating Effect of Red light Exposure on Pre-existing Melanopsin-Driven Post-illumination Pupil Response" Lei et al. (2016) [1]). MPC induced by the "Red Only" condition was compared with the MPC induced by the "Blue+Red" condition by multiple paired sample t-tests with Bonferroni correction.
Project description:Selective attention is an efficient processing strategy to allocate computational resources for pivotal optical information. However, the hardware implementation of selective visual attention in conventional intelligent system is usually bulky and complex along with high computational cost. Here, programmable ferroelectric bionic vision hardware to emulate the selective attention is proposed. The tunneling effect of photogenerated carriers are controlled by dynamic variation of energy barrier, enabling the modulation of memory strength from 9.1% to 47.1% without peripheral storage unit. The molecular polarization of ferroelectric P(VDF-TrFE) layer enables a single device not only multiple nonvolatile states but also the implementation of selective attention. With these ferroelectric devices are arrayed together, UV light information can be selectively recorded and suppressed the with high current decibel level. Furthermore, the device with positive polarization exhibits high wavelength dependence in the image attention processing, and the fabricated ferroelectric sensory network exhibits high accuracy of 95.7% in the pattern classification for multi-wavelength images. This study can enrich the neuromorphic functions of bioinspired sensing devices and pave the way for profound implications of future bioinspired optoelectronics.
Project description:Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs). These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Rod-cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod-cone networks. To determine how the ipRGCs relay rod-cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.
Project description:Inconclusive evidence suggests that the pupil is more dilated when the breadth of attention is broad compared to narrow. To further investigate this relationship, we recorded pupil size from healthy volunteers while inducing trial-wise changes in breadth of attention using a shape-discrimination task where participants had to remember the location of a gap in a small or a large circle. A visual search task with targets presented at different distances from the centre of the screen was used to behaviourally assess the success of the manipulation of breadth of attention. Data were analysed using a generalised additive mixed model to test the experimental effects on pupil size after controlling for the effects of gaze location and eye vergence. The results showed that the pupil was more dilated in the broad-breadth-of-attention condition compared to the narrow-breadth-of-attention condition. However, the effect of attentional breadth on visual search performance was not mediated by pupil size, suggesting that more research is needed to understand the functional role of pupil dilation in relation to breadth of attention.
Project description:PurposeThe intrinsically photosensitive retinal ganglion cells (ipRGCs) signal environmental light, with axons projected to the midbrain that control pupil size and circadian rhythms. Post-illumination pupil response (PIPR), a sustained pupil constriction after short-wavelength light stimulation, is an indirect measure of ipRGC activity. Here, we measured the PIPR in young adults with various refractive errors using a custom-made optical system.MethodsPIPR was measured on myopic (-3.50 ± 1.82 D, n = 20) and non-myopic (+0.28 ± 0.23 D, n = 19) participants (mean age, 23.36 ± 3.06 years). The right eye was dilated and presented with long-wavelength (red, 625 nm, 3.68 × 1014 photons/cm2/s) and short-wavelength (blue, 470 nm, 3.24 × 1014 photons/cm2/s) 1 s and 5 s pulses of light, and the consensual response was measured in the left eye for 60 s following light offset. The 6 s and 30 s PIPR and early and late area under the curve (AUC) for 1 and 5 s stimuli were calculated.ResultsFor most subjects, the 6 s and 30 s PIPR were significantly lower (p < 0.001), and the early and late AUC were significantly larger for 1 s blue light compared to red light (p < 0.001), suggesting a strong ipRGC response. The 5 s blue stimulation induced a slightly stronger melanopsin response, compared to 1 s stimulation with the same wavelength. However, none of the PIPR metrics were different between myopes and non-myopes for either stimulus duration (p > 0.05).ConclusionsWe confirm previous research that there is no effect of refractive error on the PIPR.