Project description:IntroductionObjective and accessible markers for Alzheimer's disease (AD) and other dementias are critically needed.MethodsWe identified NMDAR2A, a protein related to synaptic function, as a novel marker of central nervous system (CNS)-derived plasma extracellular vesicles (EVs) and developed a flow cytometry-based technology for detecting such plasma EVs readily. The assay was initially tested in our local cross-sectional study to distinguish AD patients from healthy controls (HCs) or from Parkinson's disease (PD) patients, followed by a validation study using an independent cohort collected from multiple medical centers (the Alzheimer's Disease Neuroimaging Initiative). Cerebrospinal fluid AD molecular signature was used to confirm diagnoses of all AD participants.ResultsLikely CNS-derived EVs in plasma were significantly reduced in AD compared to HCs in both cohorts. Integrative models including CNS-derived EV markers and AD markers present on EVs reached area under the curve of 0.915 in discovery cohort and 0.810 in validation cohort.DiscussionThis study demonstrated that robust and rapid analysis of individual neuron-derived synaptic function-related EVs in peripheral blood may serve as a helpful marker of synaptic dysfunction in AD and dementia.
Project description:IntroductionThere are no blood-based biomarkers for cognitive decline in aging, or mild cognitive impairment (MCI) and Alzheimer's disease (AD). Cumulative evidence suggests that apolipoproteins, complement system, and transthyretin are involved in AD pathogenesis by sequestration of amyloid β. However, there is no clinical study to assess the utility of "sequester proteins" in risk assessment and/or diagnosis of MCI and AD.MethodsSerum levels of sequester proteins and their clinical potential in cognitive decline assessment were analyzed by longitudinal and cross-sectional studies using independent cohorts and were confirmed by a prospective study.ResultsA combination of apolipoprotein A1, complement C3, and transthyretin achieved an area under the curve of 0.89 (sensitivity 91% and specificity 80%) in MCI versus healthy controls and also discriminated individuals with mild cognitive decline from healthy controls.DiscussionA set of sequester proteins could be blood-based biomarkers for assessment of early stages of cognitive decline.
Project description:BackgroundThe physical function of elderly individuals reflects whether they have had a history of regular physical activity over the long term. Such indicators have been found to have a certain connection with cognitive function these years. However, there is limited research that associates it with mechanisms such as cerebral Aβ deposition. We aim to investigate this relationship and unveil the underlying mechanisms.MethodPhysical function and cognition data of 4189 participants were obtained from the Chinese preclinical Alzheimer's disease study. Participants were divided into six groups according to disease severity. Among them, 1048 participants underwent the positron emission tomography-computed tomography (PET-CT) and plasma biomarker test. Grip strength and gait were combined into a score indicating physical function. Multiple linear regression models and logistic regression models were mainly used to conduct the analysis.ResultsThere was a significant positive correlation between physical function and cognitive function (R = 0.48, p < 0.001), independent of sex, age, apolipoprotein E-ε4 genotype, and disease stages (p < 0.001). Physical function was effective in distinguishing individuals with cognitive impairment from those without (AUC = 0.835). Physical function was negatively associated with brain Aβ deposition (p = 0.008) and brain Aβ had an intermediary effect (p < 0.01) on the association between physical function and cognition in women. This association was mainly evident in the lateral parietal, lateral temporal, posterior cingulate, frontal, occipital, and precuneus regions. Physical function was negatively associated with plasma neurofilament light-chain (Nfl) level (p < 0.001).ConclusionsPhysical function is strongly associated with cognitive function in the Chinese elderly, and brain Aβ deposition partly mediates the linkage in women. Plasma Nfl can be used as a potential target for exercise intervention in cognitive function. Improving physical function will contribute to the alleviation of cognition decline.
Project description:BackgroundNeonatal encephalopathy often leads to lifelong disabilities with limited treatments currently available. The brain vasculature is an important factor in many neonatal neurological disorders but there is a lack of diagnostic tools to evaluate the brain vascular dysfunction of neonates in the clinical setting. Measurement of blood-brain barrier tight-junction (TJ) proteins have shown promise as biomarkers for brain injury in the adult. Here we tested the biomarker potential of tight-junctions in the context of neonatal brain injury.MethodsThe levels of TJ-proteins (occluding, claudin-5, and zonula occludens protein 1) in both blood plasma and cerebrospinal fluid (CSF) as well as blood-brain barrier function via 14C-sucrose (342 Da) and Evans blue extravasation were measured in a hypoxia/ischemia brain-injury model in neonatal rats.ResultsTime-dependent changes of occludin and claudin-5 levels could be measured in blood and CSF after hypoxia/ischemia with males generally having higher levels than females. The levels of claudin-5 in CSF correlated with the severity of the brain injury at 24 h post- hypoxia/ischemia. Simultaneously, we detected early increase in blood-brain barrier-permeability at 6 and 24 h after hypoxia/ischemia.ConclusionsLevels of circulating claudin-5 and occludin are increased after hypoxic/ischemic brain injuries and blood-brain barrier-impairment and have promise as early biomarkers for cerebral vascular dysfunction and as a tool for risk assessment of neonatal brain injuries.
Project description:ObjectiveTo determine whether blood-based biomarkers can differentiate older veterans with and without traumatic brain injury (TBI) and cognitive impairment (CogI).MethodsWe enrolled 155 veterans from 2 veterans' retirement homes: 90 without TBI and 65 with TBI history. Participants were further separated into CogI groups: controls (no TBI, no CogI), n = 60; no TBI with CogI, n = 30; TBI without CogI, n = 30; and TBI with CogI, n = 35. TBI was determined by the Ohio State University TBI Identification Method. CogI was defined as impaired cognitive testing, dementia diagnosis, or use of dementia medication. Blood specimens were enriched for CNS-derived exosomes. Proteins (neurofilament light [NfL], total tau, glial fibrillary acidic protein [GFAP], α-synuclein, β-amyloid 42 [Aβ42], and phosphorylated tau [p-tau]) and cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-10) were measured using ultrasensitive immunoassays.ResultsVeterans were, on average, 79 years old. In participants with TBI history, 65% had mild TBI; average time from most recent TBI was 37 years. In adjusted analyses, the TBI and CogI groups differed on CNS-enriched exosome concentration of p-tau, NfL, IL-6, TNF-α (all p < 0.05), and GFAP (p = 0.06), but not on Aβ42 or other markers. Adjusted area under the curve (AUC) analyses found that all significantly associated biomarkers combined separated TBI with/without CogI (AUC, 0.85; 95% confidence interval [CI], 0.74-0.95) and CogI with/without TBI (AUC, 0.88; 95% CI, 0.77-0.99).ConclusionsIncreased levels of blood-based, CNS-enriched exosomal biomarkers associated with TBI and CogI can be detected even decades after TBI.Classification of evidenceThis study provides Class II evidence that in veterans with a history of TBI, CNS-enriched exosome concentration of p-tau, NfL, IL-6, and TNF-α are associated with CogI.
Project description:Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Project description:In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning (g)? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise g-cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic N = 38,379 (age range = 44 to 84 years old). These g-morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.17 across morphometry measures) and show good cross-cohort agreement (mean spatial correlation r = 0.57, SD = 0.18). Then, to address (2), we bring together existing - and derive new - cortical maps of 33 neurobiological characteristics from multiple modalities (including neurotransmitter receptor densities, gene expression, functional connectivity, metabolism, and cytoarchitectural similarity). We discover that these 33 profiles spatially covary along four major dimensions of cortical organisation (accounting for 65.9% of the variance) and denote aspects of neurobiological scaffolding that underpin the spatial patterning of MRI-cognitive associations we observe (significant |r| range = 0.21 to 0.56). Alongside the cortical maps from these analyses, which we make openly accessible, we provide a compendium of cortex-wide and within-region spatial correlations among general and specific facets of brain cortical organisation and higher order cognitive functioning, which we hope will serve as a framework for analysing other aspects of behaviour-brain MRI associations.
Project description:Determination of metabolomic signatures of pulmonary function and chronic obstructive pulmonary disease (COPD) in the general population could aid in identification and understanding of early disease processes. Metabolome measurements were performed on serum from 4742 individuals (2354 African-Americans and 1529 European-Americans from the Atherosclerosis Risk in Communities study and 859 Europeans from the Cooperative Health Research in the Region of Augsburg study). We examined 368 metabolites in relation to cross-sectional measures of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), their ratio (FEV1/FVC) and COPD using multivariable regression followed by meta-analysis. At a false discovery rate of 0.05, 95 metabolites were associated with FEV1 and 100 with FVC (73 overlapping), including inverse associations with branched-chain amino acids and positive associations with glutamine. Ten metabolites were associated with FEV1/FVC and seventeen with COPD (393 cases). Enriched pathways of amino acid metabolism were identified. Associations with FEV1 and FVC were not driven by individuals with COPD. We identified novel metabolic signatures of pulmonary function and COPD in African and European ancestry populations. These may allow development of biomarkers in the general population of early disease pathogenesis, before pulmonary function has decreased to levels diagnostic for COPD.
Project description:We recently showed that Alzheimer's disease patients have lower plasma concentrations of the phosphatidylcholines (PC16:0/20:5; PC16:0/22:6; and PC18:0/22:6) relative to healthy controls. We now extend these findings by examining associations between plasma concentrations of these PCs with cognition and brain function (measured by regional resting state cerebral blood flow; rCBF) in non-demented older individuals. Within the Baltimore Longitudinal Study of Aging neuroimaging substudy, participants underwent cognitive assessments and brain (15)O-water positron emission tomography. Plasma phosphatidylcholines concentrations (PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6), cognition (California Verbal Learning Test (CVLT), Trail Making Test A&B, the Mini-Mental State Examination, Benton Visual Retention, Card Rotation, and Fluencies-Category and Letter), and rCBF were assessed. Lower plasma phosphatidylcholine concentrations were associated with lower baseline memory performance (CVLT long delay recall task-PC16:0/20:5: -2.17-1.39-0.60 p = 0.001 (β with 95% confidence interval subscripts)) and lower rCBF in several brain regions including those associated with memory performance and higher order cognitive processes. Our findings suggest that lower plasma concentrations of PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6 are associated with poorer memory performance as well as widespread decreases in brain function during aging. Dysregulation of peripheral phosphatidylcholine metabolism may therefore be a common feature of both Alzheimer's disease and age-associated differences in cognition.
Project description:Vascular brain injury results in loss of structural and functional connectivity and leads to cognitive impairment. Its various manifestations, including microinfarcts, microhaemorrhages and white matter hyperintensities, result in microstructural tissue integrity loss and secondary neurodegeneration. Among these, tissue microstructural alteration is a relatively early event compared with atrophy along the aging and neurodegeneration continuum. Understanding its association with cognition may provide the opportunity to further elucidate the relationship between vascular health and clinical outcomes. Magnetic resonance elastography offers a non-invasive approach to evaluate tissue mechanical properties, providing a window into the microstructural integrity of the brain. This retrospective study evaluated brain stiffness as a potential biomarker for vascular brain injury and its role in mediating the impact of vascular dysfunction on cognitive impairment. Seventy-five participants from the Mayo Clinic Study of Aging underwent brain imaging using a 3T MR imager with a spin-echo echo-planar imaging sequence for magnetic resonance elastography and T1- and T2-weighted pulse sequences. This study evaluated the effects of vascular biomarkers (white matter hyperintensities and cardiometabolic condition score) on brain stiffness using voxelwise analysis. Partial correlation analysis explored associations between brain stiffness, white matter hyperintensities, cardiometabolic condition and global cognition. Mediation analysis determined the role of stiffness in mediating the relationship between vascular biomarkers and cognitive performance. Statistical significance was set at P-values < 0.05. Diagnostic accuracy of magnetic resonance elastography stiffness for white matter hyperintensities and cardiometabolic condition was evaluated using receiver operator characteristic curves. Voxelwise linear regression analysis indicated white matter hyperintensities negatively correlate with brain stiffness, specifically in periventricular regions with high white matter hyperintensity levels. A negative association between cardiovascular risk factors and stiffness was also observed across the brain. No significant patterns of stiffness changes were associated with amyloid load. Global stiffness (µ) negatively correlated with both white matter hyperintensities and cardiometabolic condition when all other covariables including amyloid load were controlled. The positive correlation between white matter hyperintensities and cardiometabolic condition weakened and became statistically insignificant when controlling for other covariables. Brain stiffness and global cognition were positively correlated, maintaining statistical significance after adjusting for all covariables. These findings suggest mechanical alterations are associated with cognitive dysfunction and vascular brain injury. Brain stiffness significantly mediated the indirect effects of white matter hyperintensities and cardiometabolic condition on global cognition. Local cerebrovascular diseases (assessed by white matter hyperintensities) and systemic vascular risk factors (assessed by cardiometabolic condition) impact brain stiffness with spatially and statistically distinct effects. Global brain stiffness is a significant mediator between vascular disease measures and cognitive function, highlighting the value of magnetic resonance elastography-based mechanical assessments in understanding this relationship.