Project description:IntroductionAs global travel becomes more prevalent, medical students may be asked to care for patients with unforeseen exposures. We developed a simulation where clerkship medical students interviewed and examined a patient with recent travel who presented with bloody diarrhea and abdominal pain and was diagnosed with amebic colitis. The students had the opportunity to develop a differential diagnosis and discuss the workup of the patient.MethodsWe divided students into two groups. Each group took a turn participating in the simulation while the other group observed. Students were expected to interview and examine the patient as well as treat any urgent findings and develop a differential diagnosis. After each simulation, we reconvened with both groups for a faculty-led debriefing session to discuss the learning objectives, including approaches to caring for a patient with diarrhea and the differential diagnosis and workup of bloody diarrhea.ResultsTo date, five different groups of six to 12 students have completed this simulation. The module has been well received, and 100% of survey respondents have agreed that after completing the activity, they had a better understanding of how to approach a recent traveler with diarrhea and abdominal pain.DiscussionWhile most medical students will not travel abroad for traditional global health experiences, many will encounter patients with recent travel or immigration and must therefore be prepared to treat diseases typically categorized as global health. We developed this simulation and successfully incorporated workup of a returning traveler into the medical school curriculum for clerkship students.
Project description:Shigella is a leading cause of moderate-to-severe diarrhea globally and the causative agent of shigellosis and bacillary dysentery. Associated with 80 to 165 million cases of diarrhea and >13% of diarrheal deaths, in many regions, Shigella exposure is ubiquitous while infection is heterogenous. To characterize host-genetic susceptibility to Shigella-associated diarrhea, we performed two independent genome-wide association studies (GWAS) including Bangladeshi infants from the PROVIDE and CBC birth cohorts in Dhaka, Bangladesh. Cases were infants with Shigella-associated diarrhea (n = 143) and controls were infants with no Shigella-associated diarrhea in the first 13 months of life (n = 446). Shigella-associated diarrhea was identified via quantitative PCR (qPCR) threshold cycle (CT ) distributions for the ipaH gene, carried by all four Shigella species and enteroinvasive Escherichia coli Host GWAS were performed under an additive genetic model. A joint analysis identified protective loci on chromosomes 11 (rs582240, within the KRT18P59 pseudogene; P = 6.40 × 10-8; odds ratio [OR], 0.43) and 8 (rs12550437, within the lincRNA RP11-115J16.1; P = 1.49 × 10-7; OR, 0.48). Conditional analyses identified two previously suggestive loci, a protective locus on chromosome 7 (rs10266841, within the 3' untranslated region [UTR] of CYTH3; Pconditional = 1.48 × 10-7; OR, 0.44) and a risk-associated locus on chromosome 10 (rs2801847, an intronic variant within MPP7; Pconditional = 8.37 × 10-8; OR, 5.51). These loci have all been indirectly linked to bacterial type 3 secretion system (T3SS) activity, its components, and bacterial effectors delivered into host cells. Host genetic factors that may affect bacterial T3SS activity and are associated with the host response to Shigella-associated diarrhea may provide insight into vaccine and drug development efforts for Shigella-associated diarrheal disease.
Project description:Campylobacter jejuni is a leading cause of bacterial diarrhea worldwide and is associated with high rates of mortality and growth stunting in children inhabiting low- to middle-resource countries. To better understand the impact of breastfeeding on Campylobacter infection in infants in sub-Saharan Africa and South Asia, we examined fecal microbial compositions, bacterial isolates, and their carbohydrate metabolic pathways in Campylobacter-positive infants <1 year of age from the Global Enterics Multicenter Study. Exclusively breastfed infants with diarrhea exhibited high Campylobacter abundances, and this negatively correlated with bacterial carbohydrate metabolism. Although C. jejuni and Campylobacter coli are prevalent among these infants, the second most abundant Campylobacter species was a new species, which we named "Candidatus Campylobacter infans." Asymptomatic Campylobacter carriers also possess significantly different proportions of specific gut microbes compared to diarrheal cases. These findings provide insight into Campylobacter infections in infants in sub-Saharan Africa and South Asia and help inform strategies aimed at eliminating campylobacteriosis in these areas.IMPORTANCECampylobacter is the primary cause of bacterial diarrhea in the United States and can lead to the development of the postinfectious autoimmune neuropathy known as Guillain-Barré syndrome. Also, drug-resistant campylobacters are becoming a serious concern both locally and abroad. In low- and middle-income countries (LMICs), infection with Campylobacter is linked to high rates of morbidity, growth stunting, and mortality in children, and breastfeeding is important for infant nutrition, development, and protection against infectious diseases. In this study, we examined the relationship between breastfeeding and Campylobacter infection and demonstrate the increased selection for C. jejuni and C. coli strains unable to metabolize fucose. We also identify a new Campylobacter species coinfecting these infants with a high prevalence in five of the seven countries in sub-Saharan Africa and South Asia examined. These findings indicate that more detailed studies are needed in LMICs to understand the Campylobacter infection process in order to devise a strategy for eliminating this pathogenic microbe.
Project description:Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.