Project description:A novel gene, eglC, encoding an endoglucanase, was cloned from Aspergillus niger. Transcription of eglC is regulated by XlnR, a transcriptional activator that controls the degradation of polysaccharides in plant cell walls. EglC is an 858-amino-acid protein and contains a conserved C-terminal cellulose-binding domain. EglC can be classified in glycoside hydrolase family 74. No homology to any of the endoglucanases from Trichoderma reesei was found. In the plant cell wall xyloglucan is closely linked to cellulose fibrils. We hypothesize that the EglC cellulose-binding domain anchors the enzyme to the cellulose chains while it is cleaving the xyloglucan backbone. By this action it may contribute to the degradation of the plant cell wall structure together with other enzymes, including hemicellulases and cellulases. EglC is most active towards xyloglucan and therefore is functionally different from the other two endoglucanases from A. niger, EglA and EglB, which exhibit the greatest activity towards beta-glucan. Although the mode of action of EglC is not known, this enzyme represents a new enzyme function involved in plant cell wall polysaccharide degradation by A. niger.
Project description:Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as K m = 27.5 ± 4.33 mg/mL, V max = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.
Project description:The expression of genes encoding enzymes involved in xylan degradation and two endoglucanases involved in cellulose degradation was studied at the mRNA level in the filamentous fungus Aspergillus niger. A strain with a loss-of-function mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain with multiple copies of this gene were investigated in order to define which genes are controlled by XlnR. The data presented in this paper show that the transcriptional activator XlnR regulates the transcription of the xlnB, xlnC, and xlnD genes encoding the main xylanolytic enzymes (endoxylanases B and C and beta-xylosidase, respectively). Also, the transcription of the genes encoding the accessory enzymes involved in xylan degradation, including alpha-glucuronidase A, acetylxylan esterase A, arabinoxylan arabinofuranohydrolase A, and feruloyl esterase A, was found to be controlled by XlnR. In addition, XlnR also activates transcription of two endoglucanase-encoding genes, eglA and eglB, indicating that transcriptional regulation by XlnR goes beyond the genes encoding xylanolytic enzymes and includes regulation of two endoglucanase-encoding genes.
Project description:In the context of avoiding the use of non-renewable energy sources, employing lignocellulosic biomass for ethanol production remains a challenge. Cellulases play an important role in this scenario: they are some of the most important industrial enzymes that can hydrolyze lignocellulose. This study aims to improve on the characterization of a thermostable Aspergillusfumigatus endo-1,4-β-glucanase GH7 (Af-EGL7). To this end, Af-EGL7 was successfully expressed in Pichia pastoris X-33. The kinetic parameters Km and Vmax were estimated and suggested a robust enzyme. The recombinant protein was highly stable within an extreme pH range (3.0-8.0) and was highly thermostable at 55 °C for 72 h. Low Cu2+ concentrations (0.1-1.0 mM) stimulated Af-EGL7 activity up to 117%. Af-EGL7 was tolerant to inhibition by products, such as glucose and cellobiose. Glucose at 50 mM did not inhibit Af-EGL7 activity, whereas 50 mM cellobiose inhibited Af-EGL7 activity by just 35%. Additionally, the Celluclast® 1.5L cocktail supplemented with Af-EGL7 provided improved hydrolysis of sugarcane bagasse "in natura", sugarcane exploded bagasse (SEB), corncob, rice straw, and bean straw. In conclusion, the novel characterization of Af-EGL7 conducted in this study highlights the extraordinary properties that make Af-EGL7 a promising candidate for industrial applications.
Project description:Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.
Project description:?-1,4-Mannanase (?-mannanase) is a key enzyme in decomposing mannans, which are abundant components of hemicelluloses in the plant cell wall. Therefore, mannan hydrolysis is highly valuable in a wide array of industrial applications. ?-Mannanase isolated from Aspergillus niger BK01 (ManBK) was classified into glycoside hydrolase family GH5. ManBK holds great potential in biotechnological applications owing to its high thermostability. Here, ManBK was expressed and purified in Pichia pastoris and the recombinant protein was crystallized. Crystals belonging to the orthorhombic space group C222?, with unit-cell parameters a=93.58, b=97.05, c=147.84?Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.57?Å resolution. Structure determination using molecular-replacement methods is in progress.
Project description:Endoglucanase B (EGLB) derived from Aspergillus niger BCRC31494 has been used in the food fermentation industry because of its thermal and alkaline tolerance. It was cloned and expressed in Pichia pastoris. According to sequence analysis, the gene open reading frame comprises 1,217 bp with five introns (GenBank GQ292753). According to sequence and protein domain analyses, EGLB was assigned to glycosyl hydrolase family 5 of the cellulase superfamily. Several binding sites were found in the promoter region. The purified recombinant enzyme was induced by 0.5% methanol, and it exhibited optimal activity at 70 °C and pH 4. EGLB was stable for 3 h at temperatures below 60 °C, with more than 90% of its activity remaining. The enzyme was specific for substrates with β-1,3 and β-1,4 linkages. In Lineweaver-Burk plot analysis, the K(m) and V(max) values of EGLB for β-D-glucan were 134 mg/mL and 4.68 U/min/mg, respectively. The enzyme activity was increased by 1.86-fold by Co²⁺ and by 2-fold by Triton X-100 and Tween 80. These favorable properties make EGLB a potential candidate for use in laundry and textile industrial applications.
Project description:Tannase is widely used in tea beverage processing because of its ability to catalyze the hydrolysis of hydrolysable tannins or gallic acid esters and effectively improve the quality of tea extracts through enzymatic extraction. A new thermophilic tannase was cloned from Aspergillus niger FJ0118 and characterized. The tannase exhibited an optimal reaction temperature of 80 °C and retained 89.6% of the initial activity after incubation at 60 °C for 2 h. The enzymatic extraction of green tea at high temperature (70 °C) for a short time (40 min) was devised on the basis of the superior thermal stability of tannase. The enzymatic reaction significantly increased the total polyphenol content of green tea extract from 137 g·kg-1 to 291 g·kg-1. The enzymatic reaction effectively degraded the ester catechins into non-ester catechins compared with the water extraction method. Results suggested that the thermally stable tannase exhibited potential applications in the enzymatic extraction of green tea beverage.
Project description:Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.
Project description:Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied.