Project description:Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.
Project description:Enzymatic removal of blood groups antigens A and B is an efficient method for production of universal red blood cells. In this research, an α-N-acetylgalactosaminidase (NAGA) enzyme was expressed in Pichia pastoris for digestion of the A blood antigen. DNA sequence of the gene NAGA, originally expressed in Elizabethkingia meningosepticum (NAGA-EM), was ordered for optimization and synthesis. It was then expressed in P. pastoris (KM71H and GS115 strains). Expression of the recombinant NAGA was evaluated by dot blot, SDS-PAGE, and Western blotting. The activity of the enzyme was measured using a synthetic substrate in addition to the conversion of group A red blood cells to the O cells. Expression of NAGA-EM with an apparent molecular mass of 55 kDa was verified by dot blot, SDS-PAGE and Western blot analysis. The maximum enzyme activity in the supernatant of KM71H was higher than that in the GS115 (250 vs. 200 U/ml). Treated group A RBCs did not react with the anti-A antiserum or with the sera from individuals with blood groups B and O. The results of this study indicated that NAGA-EM is an efficient enzyme for production of universal O blood cells.
Project description:High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an alpha-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4x10(4) U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.
Project description:Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enzyme identified that catalyzes this reaction. Interestingly, CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC). We show that CsOxOx activity directly correlates with Mn content and other metals do not appear to be able to support catalysis. EPR spectra indicate that the Mn is present as Mn(II), and are consistent with the coordination environment expected from homology modeling with known X-ray crystal structures of OxDC from Bacillus subtilis. EPR spin-trapping experiments support the existence of an oxalate-derived radical species formed during turnover. Acetate and a number of other small molecule carboxylic acids are competitive inhibitors for oxalate in the CsOxOx catalyzed reaction. The pH dependence of this reaction suggests that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated.
Project description:Soluble nucleases of the deoxyribonuclease 1 (DNase1) family facilitate DNA and chromatin disposal (chromatinolysis) during certain forms of cell differentiation and death and participate in the suppression of anti-nuclear autoimmunity as well as thrombotic microangiopathies caused by aggregated neutrophil extracellular traps. Since a systematic and direct comparison of the specific activities and properties of the secretory DNase1 family members is still missing, we expressed and purified recombinant murine DNase1 (rmDNase1), DNase1-like 2 (rmDNase1L2) and DNase1-like 3 (rmDNase1L3) using Pichia pastoris. Employing different strategies for optimizing culture and purification conditions, we achieved yields of pure protein between ~3 mg/l (rmDNase1L2 and rmDNase1L3) and ~9 mg/l (rmDNase1) expression medium. Furthermore, we established a procedure for post-expressional maturation of pre-mature DNase still bound to an unprocessed tri-N-glycosylated pro-peptide of the yeast α-mating factor. We analyzed glycosylation profiles and determined specific DNase activities by the hyperchromicity assay. Additionally, we evaluated substrate specificities under various conditions at equimolar DNase isoform concentrations by lambda DNA and chromatin digestion assays in the presence and absence of heparin and monomeric skeletal muscle α-actin. Our results suggest that due to its biochemical properties mDNase1L2 can be regarded as an evolutionary intermediate isoform of mDNase1 and mDNase1L3. Consequently, our data show that the secretory DNase1 family members complement each other to achieve optimal DNA degradation and chromatinolysis under a broad spectrum of biological conditions.
Project description:Prostaglandin H synthases (PGHSs) are N-glycosylated membrane proteins that catalyse the committed step in prostaglandin synthesis. Unlike PGHS-2, the production of recombinant PGHS-1 in non-mammalian expression systems is complicated. The majority of the heterologous enzyme is inactive due to misfolding. Correct N-glycosylation is proposed to be obligatory for proper folding of mammalian PGHSs. In this study, human PGHS-1 and -2 (hPGHS-1 and -2) were expressed in the yeast Pichia pastoris. Recombinant hPGHS-2 was catalytically active, whereas hPGHS-1 was inactive. Accumulation of non-glycosylated hPGHSs was not observed in the crude lysate of the yeast cells. The N-glycosylation patterns of the purified recombinant proteins were characterised using nano-LC/MS/MS. The isoforms exhibited similar N-glycosylation site occupancy. The results indicate that there are more complex grounds for the inactivity of the recombinant hPGHS-1 produced in yeast.
Project description:The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Recombinant 3CL(pro) was expressed in Pichia pastoris GS115 as a 42 kDa protein that displayed a K ( m ) of 15 ± 2 ?M with Dabcyl-KTSAVLQSGFRKME-Edans as substrate. Purified 3CL(pro) was used for inhibition and kinetic assays with seven flavonoid compounds. The IC(50) of six flavonoid compounds were 47-381 ?M. Quercetin, epigallocatechin gallate and gallocatechin gallate (GCG) displayed good inhibition toward 3CL(pro) with IC(50) values of 73, 73 and 47 ?M, respectively. GCG showed a competitive inhibition pattern with K ( i ) value of 25 ± 1.7 ?M. In molecular docking experiments, GCG displayed a binding energy of -14 kcal mol(-1) to the active site of 3CL(pro) and the galloyl moiety at 3-OH position was required for 3CL(pro) inhibition activity.
Project description:Basidiomycete high-redox potential laccases (HRPLs) working in human physiological fluids (pH 7.4, 150 mM NaCl) arise great interest in the engineering of 3D-nanobiodevices for biomedical uses. In two previous reports, we described the directed evolution of a HRPL from basidiomycete PM1 strain CECT 2971: i) to be expressed in an active, soluble and stable form in Saccharomyces cerevisiae, and ii) to be active in human blood. In spite of the fact that S. cerevisiae is suited for the directed evolution of HRPLs, the secretion levels obtained in this host are not high enough for further research and exploitation. Thus, the search for an alternative host to over-express the evolved laccases is mandatory.A blood-active laccase (ChU-B mutant) fused to the native/evolved ?-factor prepro-leader was cloned under the control of two different promoters (P(AOX1) and P(GAP)) and expressed in Pichia pastoris. The most active construct, which contained the P(AOX1) and the evolved prepro-leader, was fermented in a 42-L fed-batch bioreactor yielding production levels of 43 mg/L. The recombinant laccase was purified to homogeneity and thoroughly characterized. As happened in S. cerevisiae, the laccase produced by P. pastoris presented an extra N-terminal extension (ETEAEF) generated by an alternative processing of the ?-factor pro-leader at the Golgi compartment. The laccase mutant secreted by P. pastoris showed the same improved properties acquired after several cycles of directed evolution in S. cerevisiae for blood-tolerance: a characteristic pH-activity profile shifted to the neutral-basic range and a greatly increased resistance against inhibition by halides. Slight biochemical differences between both expression systems were found in glycosylation, thermostability and turnover numbers.The tandem-yeast system based on S. cerevisiae to perform directed evolution and P. pastoris to over-express the evolved laccases constitutes a promising approach for the in vitro evolution and production of these enzymes towards different biocatalytic and bioelectrochemical applications.
Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat.