Project description:Synechococcus elongatus strain PCC 7942 strictly depends upon the generation of photosynthetically derived energy for growth and is incapable of biomass increase in the absence of light energy. Obligate phototrophs' core metabolism is very similar to that of heterotrophic counterparts exhibiting diverse trophic behavior. Most characterized cyanobacterial species are obligate photoautotrophs under examined conditions. Here we determine that sugar transporter systems are the necessary genetic factors in order for a model cyanobacterium, Synechococcus elongatus PCC 7942, to grow continuously under diurnal (light/dark) conditions using saccharides such as glucose, xylose, and sucrose. While the universal causes of obligate photoautotrophy may be diverse, installing sugar transporters provides new insight into the mode of obligate photoautotrophy for cyanobacteria. Moreover, cyanobacterial chemical production has gained increased attention. However, this obligate phototroph is incapable of product formation in the absence of light. Thus, converting an obligate photoautotroph to a heterotroph is desirable for more efficient, economical, and controllable production systems.
Project description:The first comparative proteomics is to understand protein profile differences between high limonene production phase and low limonene production phase in limonene producing strain L1118. The second comparative proteomics is to understand protein profile differences between L1118 and sucrose mutant Lsps.
Project description:Phosphoglycerate-mutase (PGM) is an ubiquitous glycolytic enzyme, which in eukaryotic cells can be found in different compartments. In prokaryotic cells, several PGMs are annotated/localized in one compartment. The identification and functional characterization of PGMs in prokaryotes is therefore important for better understanding of metabolic regulation. Here we introduce a method, based on a multi-level kinetic model of the primary carbon metabolism in cyanobacterium Synechococcus elongatus PCC 7942, that allows the identification of a specific function for a particular PGM. The strategy employs multiple parameter estimation runs in high CO2, combined with simulations testing a broad range of kinetic parameters against the changes in transcript levels of annotated PGMs. Simulations are evaluated for a match in metabolic level in low CO2, to reveal trends that can be linked to the function of a particular PGM. A one-isoenzyme scenario shows that PGM2 is a major regulator of glycolysis, while PGM1 and PGM4 make the system robust against environmental changes. Strikingly, combining two PGMs with reverse transcriptional regulation allows both features. A conclusion arising from our analysis is that a two-enzyme PGM system is required to regulate the flux between glycolysis and the Calvin-Benson cycle, while an additional PGM increases the robustness of the system.
Project description:Ethylene is a volatile alkene which is used in large commercial scale as a precursor in plastic industry, and is currently derived from petroleum refinement. As an alternative production strategy, photoautotrophic cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been previously evaluated as potential biotechnological hosts for producing ethylene directly from CO2, by the over-expression of ethylene forming enzyme (efe) from Pseudomonas syringae. This work addresses various open questions related to the use of Synechococcus as the engineering target, and demonstrates long-term ethylene production at rates reaching 140 µL L-1 h-1 OD750-1 without loss of host vitality or capacity to produce ethylene. The results imply that the genetic instability observed earlier may be associated with the expression strategies, rather than efe over-expression, ethylene toxicity or the depletion of 2-oxoglutarate-derived cellular precursors in Synechococcus. In context with literature, this study underlines the critical differences in expression system design in the alternative hosts, and confirms Synechococcus as a suitable parallel host for further engineering.
Project description:The psbAI gene of the cyanobacterium Synechococcus elongatus PCC 7942 is one of three psbA genes that encode a critical photosystem II reaction center protein, D1. Regulation of the gene family in response to changes in the light environment is complex, occurs at transcriptional and posttranscriptional levels, and results in an interchange of two different forms of D1 in the membrane. Expression of psbAI is downregulated under high-intensity light (high light) in contrast to induction of the other two family members. We show that, in addition to a known accelerated degradation of the psbAI message, promoter activity decreases upon exposure to high light. Unlike the other psbA genes, additional sequences upstream of the psbAI -35 element are required for expression. Mutagenizing the atypical psbAI -10 element from TCTCCT to TATAAT increased the magnitude of expression from both psbAI::lacZ and psbAI::luxAB fusions but did not affect downregulation under high light. Inactivation of group 2 sigma factor genes rpoD2 and sigC, in both wild-type and -10-element mutagenized backgrounds, resulted in elevated psbAI::luxAB expression but did not alter the response to high light. The results are consistent with redundancy of promoter recognition among cyanobacterial group 2 sigma factors. Electrophoretic mobility shift assays showed that the DNA sequence corresponding to the untranslated leader of the psbAI message binds one or more proteins from an S. elongatus extract. The corresponding region of psbAII efficiently competed for this binding activity, suggesting a shared regulatory factor among these disparately regulated genes.
Project description:To meet the need for environmentally friendly commodity chemicals, feedstocks for biological chemical production must be diversified. Lignocellulosic biomass are an carbon source with the potential for effective use in a large scale and cost-effective production systems. Although the use of lignocellulosic biomass lysates for heterotrophic chemical production has been advancing, there are challenges to overcome. Here we aim to investigate the obligate photoautotroph cyanobacterium Synechococcus elongatus PCC 7942 as a chassis organism for lignocellulosic chemical production. When modified to import monosaccharides, this cyanobacterium is an excellent candidate for lysates-based chemical production as it grows well at high lysate concentrations and can fix CO2 to enhance carbon efficiency. This study is an important step forward in enabling the simultaneous use of two sugars as well as lignocellulosic lysate. Incremental genetic modifications enable catabolism of both sugars concurrently without experiencing carbon catabolite repression. Production of 2,3-butanediol is demonstrated to characterize chemical production from the sugars in lignocellulosic hydrolysates. The engineered strain achieves a titer of 13.5 g L-1 of 2,3-butanediol over 12 days under shake-flask conditions. This study can be used as a foundation for industrial scale production of commodity chemicals from a combination of sunlight, CO2, and lignocellulosic sugars.
Project description:We analyzed the stress responses of three dnaK homologues (dnaK1, dnaK2, and dnaK3) in the cyanobacterium Synechococcus elongatus PCC 7942. A reporter assay showed that under stress conditions the expression of only the dnaK2 gene was induced, suggesting a functional assignment of these homologues. RNA blot hybridization indicated a typical stress response of dnaK2 to heat and high-light stress. Primer extension mapping showed that dnaK2 was transcribed from similar sites under various stress conditions. Although no known sequence motif was detected in the upstream region, a 20-bp sequence element was highly conserved in dnaK2; it was essential not only for the stress induction but also for the basal expression of dnaK2. The ubiquitous upstream localization of this element in each heat shock gene suggests its important role in the cyanobacterial stress response.
Project description:The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production.
Project description:The genome of the Synechococcus elongatus strain PCC 7942 encodes a putative sugar kinase (SePSK), which shares 44.9% sequence identity with the xylulose kinase-1 (AtXK-1) from Arabidopsis thaliana. Sequence alignment suggests that both kinases belong to the ribulokinase-like carbohydrate kinases, a sub-family of FGGY family carbohydrate kinases. However, their exact physiological function and real substrates remain unknown. Here we solved the structures of SePSK and AtXK-1 in both their apo forms and in complex with nucleotide substrates. The two kinases exhibit nearly identical overall architecture, with both kinases possessing ATP hydrolysis activity in the absence of substrates. In addition, our enzymatic assays suggested that SePSK has the capability to phosphorylate D-ribulose. In order to understand the catalytic mechanism of SePSK, we solved the structure of SePSK in complex with D-ribulose and found two potential substrate binding pockets in SePSK. Using mutation and activity analysis, we further verified the key residues important for its catalytic activity. Moreover, our structural comparison with other family members suggests that there are major conformational changes in SePSK upon substrate binding, facilitating the catalytic process. Together, these results provide important information for a more detailed understanding of the cofactor and substrate binding mode as well as the catalytic mechanism of SePSK, and possible similarities with its plant homologue AtXK-1.
Project description:There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.