Project description:Indocyanine green (IC-Green), the only FDA approved near-infrared (NIR) fluorophore for clinical use, is attractive to researchers for the development of targeted optical imaging agents by modification of its structure and conjugation to monoclonal antibodies (mAbs) or their fragments. IC-Green derivative, ICG-sulfo-OSu (ICG-sOSu), is frequently used for antibody conjugation. However, ICG-sOSu is amphiphilic and readily facilitates aggregation of mAbs that is not easily separable from the desired immunoconjugates. Complications originating from this behavior are frequently overlooked by researchers. This study examined detailed chemical and biological characteristics of an ICG-sOSu-labeled mAb, panitumumab, and provided a clinically applicable strategy to deliver a pure conjugation product. Size-exclusion high-performance liquid chromatography (SE-HPLC) analysis of conjugation reactions, performed at molar reaction ratios of ICG-sOSu: mAb of 5, 10, or 20, resulted in isolable desired ICG-sOSu-panitumumab conjugation product in 72%, 53%, and 19% yields, respectively, with the remainder consisting of high molecular weight aggregates (>150 kDa) 14%, 30%, and 51%, respectively. The HPLC-purified ICG-sOSu-panitumumab products were analyzed by native and SDS polyacrylamide gel electrophoresis (PAGE) followed by optical imaging. Results indicated that the interaction between ICG-sOSu and panitumumab was due to both covalent and noncovalent binding of the ICG-sOSu to the protein. Noncovalently bound dye in the ICG-sOSu-panitumumab conjugate products was removed by extraction with ethyl acetate to further purify the HPLC-isolated conjugation products. With conserved immunoreactivity, excellent target-specific uptake of the doubly purified bioconjugates was observed with minimal liver retention in athymic nude mice bearing HER1-expressing tumor xenografts. In summary, the preparation of well-defined bioconjugate products labeled with commercial ICG-sOSu dye is not a simple process and control of the conjugation reaction ratio and conditions is crucial. Furthermore, absolute purification and characterization of the products is necessitated prior to in vivo optical imaging. Use of validated and characterized dye conjugate products should facilitate the development of clinically viable and reproducible IC-Green derivative and other NIR dye mAb conjugates for optical imaging applications.
Project description:ObjectivesAnaplastic thyroid cancer (ATC) cells cannot retain the radionuclide iodine 131 (131I) for treatment due to the inability to uptake iodine. This study investigated the feasibility of combining radionuclides with photothermal agents in the diagnosis and treatment of ATC.Methods131I was labeled on human serum albumin (HSA) by the standard chloramine T method. 131I-HSA and indocyanine green (ICG) were non-covalently bound by a simple stirring to obtain 131I-HSA-ICG nanoparticles. Characterizations were performed in vitro. The cytotoxicity and imaging ability were investigated by cell/in vivo experiments. The radio-photothermal therapy efficacy of the nanoparticles was evaluated at the cellular and in vivo levels.ResultsThe synthesized nanoparticles had a suitable size (25-45 nm) and objective biosafety. Under the irradiation of near-IR light, the photothermal conversion efficiency of the nanoparticles could reach 24.25%. In vivo fluorescence imaging and single-photon emission CT (SPECT)/CT imaging in small animals confirmed that I-HSA-ICG/131I-HSA-ICG nanoparticles could stay in tumor tissues for 4-6 days. Compared with other control groups, 131I-HSA-ICG nanoparticles had the most significant ablation effect on tumor cells under the irradiation of an 808-nm laser.ConclusionsIn summary, 131I-HSA-ICG nanoparticles could successfully perform dual-modality imaging and treatment of ATC, which provides a new direction for the future treatment of iodine-refractory thyroid cancer.
Project description:ObjectiveDelineation of the intersegmental plane during pulmonary segmentectomy by systemic injection of indocyanine green (ICG) has been rapidly emerging. We evaluated the feasibility of the use of ICG in a large-scale cohort according to the type of segmentectomy and the presence of obstructive lung disorder and compared the demarcation status with air injection.MethodsWe collected the data of 209 patients who underwent segmentectomy using ICG at National Cancer Center Hospital, Tokyo, Japan. Data of the operation including the demarcation status of the intersegmental plane were analyzed retrospectively.ResultsThe median operation duration and blood loss were 105 minutes (interquartile range, 94-118 minutes) and 12 mL (interquartile range, 5-24 mL), respectively. Good demarcation of the intersegmental plane by ICG was observed in 184 (88.0%) cases, with no correlation to the type of resected segments or the presence of obstructive lung disorder. Postoperative complications of Clavien-Dindo classification grade 3 or more were observed in 5 cases (2.4%), and no ICG-related adverse event was noted. High-frequency jet ventilation was also used in 160 cases (76.6%) to delineate the intersegmental inflation-deflation plane. The air injected by high-frequency jet ventilation tended to spread further beyond the intersegmental plane that was depicted by ICG.ConclusionsThe use of ICG might demarcate the intersegmental plane more restricted to the target segment compared with air injection. Delineation of the intersegmental plane by ICG is feasible regardless of the type of segmentectomy or the presence of obstructive lung disorder, and it can be commonly applicable in pulmonary segmentectomy.
Project description:Re-operative neck surgery for hyperparathyroidism is a technically difficult operation that requires adjunctive studies to assist with finding the parathyroid tissues. Intraoperative tests help minimise exploration of the neck and decrease injuries to the surrounding structures. Indocyanine green is a near-infrared fluorescent dye that in pre-clinical models was found to be useful in locating the parathyroid glands of dogs. No study has yet reported its use as a tool for parathyroid localisation in humans. We investigated the use of indocyanine green to assist with localisation of a recurrent parathyroid adenoma using a near-infrared imaging system. After exposure of the neck tissues, the parathyroid gland fluoresced brightly and directed our dissection. Exploration of the neck was minimal, and allowed for fast localisation and excision of the adenoma. Overall, use of indocyanine green is a simple and safe technique of intraoperative parathyroid localisation that warrants further investigation.
Project description:Despite the tireless efforts of many researchers in lymphatic research, indocyanine green (ICG) solution conditions suitable for lymphatic circulation tests have not been perfectly established yet. We aimed to investigate the optimal in vivo conditions of ICG solution to avoid photobleaching and quenching effects, which may affect the accuracy of lymphatic circulation evaluation. After ICG fluorescence intensity (or ICG intensity) was assessed under different in vitro conditions, the image quality of brachial lymph nodes (LNs) and collecting lymphatic vessels (LVs) in eight rats was investigated. The in vitro results showed that ICG intensity depends on concentration and time in various solvents; however, the brightest intensity was observed at a concentration of 8-30 μg/mL in all solvents. ICG concentration in the albumin (bovine serum albumin; BSA) solution and rat's plasma showed more than two times higher fluorescence intensity than in distilled water (DW) in the same range. However, saline reduced the intensity by almost half compared to DW. In the in vivo experiment, we obtained relatively high-quality images of the LNs and LVs using ICG in the BSA solution. Even at low concentrations, the result in the BSA solution was comparable to those obtained from high-concentration solutions commonly used in conventional circulation tests. This study provides valuable information about the conditions for optimal ICG intensity in near infrared fluorescence indocyanine green (NIRF-ICG) lymphangiography, which may be useful not only for the diagnosis of lymphatic circulation diseases such as lymphedema but also for preclinical research for the lymphatic system.
Project description:Introduction This work reports the first indocyanine green videoangiography (IGV) in negative published with video format support. This technique, so called because its first phase is performed with occlusion of the vessel suspected of being pathologic, is used for the diagnosis of spinal arteriovenous fistula (sDAVF). Case Report The authors present the case of a 68-year-old man with an sDAVF fed by the right T7 segmentary artery. IGV was initially performed with the presumptive fistula feeder occluded for less than 1 minute, which provided both diagnostic and postexclusion control in one procedure. This technique therefore is reversible by not prolonging vascular exclusion times. Discussion IGV in negative is an extremely visual and intuitive procedure that represents an improvement over conventional IGV. Conclusion Studies with larger sample sizes are necessary to determine whether IGV in negative can further reduce the need for postoperative digital subtraction angiography.
Project description:A modular synthetic process enables two or four shielding arms to be appended strategically over the fluorochromes of near-infrared cyanine heptamethine dyes to create hydrophilic analogs of clinically approved indocyanine green. A key synthetic step is the facile substitution of a heptamethine 4'-Cl atom by a phenol bearing two triethylene glycol chains. The lead compound is a heptamethine dye with four shielding arms, and a series of comparative spectroscopy studies showed that the shielding arms (a) increased dye photostability and chemical stability and (b) inhibited dye self-aggregation and association with albumin protein. In mice, the dye cleared from the blood primarily through the renal pathway rather than the biliary pathway for ICG. This change in biodistribution reflects the much smaller hydrodynamic diameter of the shielded hydrophilic ICG analog compared to the 67 kDa size of the ICG/albumin complex. An attractive feature of versatile synthetic chemistry is the capability to systematically alter the dye's hydrodynamic diameter. The sterically shielded hydrophilic ICG dye platform is well-suited for immediate incorporation into dynamic contrast-enhanced (DCE) spectroscopy or imaging protocols using the same cameras and detectors that have been optimized for ICG.
Project description:IntroductionViability assessment of the graft is essential to lower the risk of liver transplantation (LT) failure and need for emergency retransplantation, however, this still relies mainly on surgeon's experience. Post-LT graft function recovery assessment is also essential to aid physicians in the management of LT recipients and guide them through challenging decision making.This study aims to trial the use of indocyanine green clearance test (IGT) in the donor as an objective tool to assess graft viability and in the recipient to assess graft function recovery after LT.Methods and analysisThis is an observational prospective single-centre study on consecutive liver transplant donors and recipients.Primary objectiveTo determine the capability of IGT of predicting graft viability at the time of organ retrieval. Indocyanine green will be administered to the donor and the plasma disappearance rate (PDR) measured using the pulsidensitometric method. Some 162 IGT donor procedures will be required (α, 5%; β, 20%) using an IGT-PDR cut-off value of 13% to achieve a significant discrimination between viable and non-viable grafts.Secondary objectiveIGT-PDR will be measured at different time-points in the LT recipient: during the anhepatic phase, after graft reperfusion, at 24 hours, on day 3 and day 7 after LT. The slope of IGT values from the donor to the recipient will be evaluated for correlation with the development of early allograft dysfunction.Ethics and disseminationThis research protocol was approved by Fondazione Policlinico Universitario Agostino Gemelli IRCCS Ethics Committee (reference number: 0048466/20, study ID: 3656) and by the Italian National Transplant Center (CNT) (reference number: Prot.11/CNT2021). Liver recipients will be required to provide written informed consent. Results will be published in international peer-reviewed scientific journals and presented in congresses.Trial registration numberNCT05228587.
Project description:Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.
Project description:Indocyanine green (ICG) is a fluorescent probe used in various optically mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and nonspecific localization. We have encapsulated ICG within electrostatically assembled mesocapsules (MCs) to explore its potential for targeted optical imaging and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely, the liver and spleen, as well as the lungs. The circulation kinetics of ICG appeared unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies.