Unknown

Dataset Information

0

Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes.


ABSTRACT: Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.

SUBMITTER: Dereli I 

PROVIDER: S-EPMC10997794 | biostudies-literature | 2024 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesi  ...[more]

Similar Datasets

2024-02-23 | PXD042221 | Pride
2024-02-23 | PXD042179 | Pride
| S-EPMC8016751 | biostudies-literature
| S-EPMC5569317 | biostudies-literature
| S-EPMC11695836 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00318-8 | biostudies-other
| S-EPMC7969012 | biostudies-literature
| S-EPMC4199369 | biostudies-literature
| S-EPMC2785808 | biostudies-literature
| S-EPMC7706706 | biostudies-literature