Project description:Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Project description:Glioblastoma (GBM), one of the most lethal brain cancers in adults, accounts for 48.6% of all malignant primary CNS tumors diagnosed each year. The 5-year survival rate of GBM patients remains less than 10% even after they receive the standard-of-care treatment, including maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide. Therefore, new therapeutic modalities are urgently needed for this deadly cancer. The last decade has witnessed great advances in chimeric antigen receptor T (CAR-T) cell immunotherapy for the treatment of hematological malignancies. Up to now, the US FDA has approved six CAR-T cell products in treating hematopoietic cancers including B-cell acute lymphoblastic leukemia, lymphoma, and multiple myeloma. Meanwhile, the number of clinical trials on CAR-T cell has increased significantly, with more than 80% from China and the United States. With its achievements in liquid cancers, the clinical efficacy of CAR-T cell therapy has also been explored in a variety of solid malignancies that include GBMs. However, attempts to expand CAR-T cell immunotherapy in GBMs have not yet presented promising results in hematopoietic malignancies. Like other solid tumors, CAR-T cell therapies against GBM still face several challenges, such as tumor heterogeneity, tumor immunosuppressive microenvironment, and CAR-T cell persistence. Hence, developing strategies to overcome these challenges will be necessary to accelerate the transition of CAR-T cell immunotherapy against GBMs from bench to bedside.
Project description:Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a cell surface antigen for therapeutic targeting in prostate cancer. Here, we report broad expression of STEAP1 relative to prostate-specific membrane antigen (PSMA) in lethal metastatic prostate cancers and the development of a STEAP1-directed chimeric antigen receptor (CAR) T cell therapy. STEAP1 CAR T cells demonstrate reactivity in low antigen density, antitumor activity across metastatic prostate cancer models, and safety in a human STEAP1 knock-in mouse model. STEAP1 antigen escape is a recurrent mechanism of treatment resistance and is associated with diminished tumor antigen processing and presentation. The application of tumor-localized interleukin-12 (IL-12) therapy in the form of a collagen binding domain (CBD)-IL-12 fusion protein combined with STEAP1 CAR T cell therapy enhances antitumor efficacy by remodeling the immunologically cold tumor microenvironment of prostate cancer and combating STEAP1 antigen escape through the engagement of host immunity and epitope spreading.
Project description:The success of immunotherapeutics over the past decade has fundamentally altered the therapeutic landscape in melanoma and non-small cell lung (NSCLC) cancer care. Multiple clinical trials have confirmed significant improvements in survival with a variety of immunotherapeutic strategies. The careful and appropriate selection of standard of care (SOC) therapies is key to the successful design and interpretation of these trials. To date immunotherapeutic trials have used best supportive care, matched placebo, chemotherapy, targeted therapy or, more recently, established immunotherapeutics in melanoma clinical trials as SOCs. Each of these SOC choices has a fundamental impact on the selection and validity of response assessment criteria and clinical endpoints. As yet there is no established approach, thus new data must be interpreted with an understanding of the limitations of the current paradigm. Additionally, the pace of development has mandated the use of novel clinical trial designs, answering multiple therapeutic questions simultaneously and designed to expedite regulatory approval. This review addresses the most important challenges in the selection of SOC in immunotherapeutic trials and the current and future challenges in trial design.
Project description:Chimeric antigen receptor (CAR) T cell therapy has shown promise in hematologic malignancies, but its application to solid tumors has been challenging1-4. Given the unique effector functions of macrophages and their capacity to penetrate tumors5, we genetically engineered human macrophages with CARs to direct their phagocytic activity against tumors. We found that a chimeric adenoviral vector overcame the inherent resistance of primary human macrophages to genetic manipulation and imparted a sustained pro-inflammatory (M1) phenotype. CAR macrophages (CAR-Ms) demonstrated antigen-specific phagocytosis and tumor clearance in vitro. In two solid tumor xenograft mouse models, a single infusion of human CAR-Ms decreased tumor burden and prolonged overall survival. Characterization of CAR-M activity showed that CAR-Ms expressed pro-inflammatory cytokines and chemokines, converted bystander M2 macrophages to M1, upregulated antigen presentation machinery, recruited and presented antigen to T cells and resisted the effects of immunosuppressive cytokines. In humanized mouse models, CAR-Ms were further shown to induce a pro-inflammatory tumor microenvironment and boost anti-tumor T cell activity.
Project description:Neuroblastoma (NBL) is the most common extracranial pediatric solid tumor and has heterogeneous biology and behavior. Patients with high-risk disease have poor prognosis despite complex multimodal therapy; therefore, novel curative approaches are needed. Immunotherapy is a novel therapeutic approach that harnesses the inherent activity of the immune system to control and eliminate malignant cells. One form of immunotherapy uses chimeric antigen receptors (CAR) to target tumor-associated antigens. CARs are derived from the antigen-binding domain of a monoclonal antibody (MAb) coupled with the intracellular signaling portion of the T cell receptor. CARs can combine the specificity and effectiveness of MAbs with the active bio-distribution, direct cytotoxicity, and long-term persistence of T cells. NBL provides an attractive target for CAR immunotherapy as many of its tumor-associated antigens are not expressed at significant levels on normal tissues, thus decreasing potential treatment related toxicity. Two previous clinical trials utilizing L1-cell adhesion molecule (L1-CAM) and disialoganglioside (GD2) specific CARs (GD2-CAR) have demonstrated safety and anti-tumor efficacy in heavily pretreated relapsed/refractory neuroblastoma patients. Based on these promising results and on improved techniques that can further potentiate CAR therapies, two clinical trials are currently investigating the use of GD2-CARs in children with NBL. Several approaches may further enhance anti-tumor activity and persistence of CAR modified cells, and if these can be safely translated into the clinic, CAR-based immunotherapy could become a viable adjunct or potential alternative to conventional treatment options for patients with NBL.
Project description:BackgroundAcute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation.MethodsIn this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered.ResultsWe first demonstrated that IL-1RAP CAR T-cells can be produced from AML T-cells at the time of diagnosis and at relapse. In vitro and in vivo, we showed the effectiveness of IL-1RAP CAR T-cells against AML cell lines expressing different levels of IL-1RAP and the cytotoxicity of autologous IL-1RAP CAR T-cells against primary cells from patients with AML at diagnosis or at relapse. In patient-derived relapsed AML xenograft models, we confirmed that IL-1RAP CAR T-cells are able to circulate in peripheral blood and to migrate in the bone marrow and spleen, are cytotoxic against primary AML cells and increased overall survival.ConclusionIn conclusion, our preclinical results suggest that IL-1RAP CAR T-based adoptive therapy could be a promising strategy in AML treatment and it warrants the clinical investigation of this CAR T-cell therapy.
Project description:Costimulatory signals are required to achieve robust chimeric antigen receptor (CAR) T cell expansion, function, persistence and antitumor activity. These can be provided by incorporating intracellular signalling domains from one or more T cell costimulatory molecules, such as CD28 or 4-1BB, into the CAR. The selection and positioning of costimulatory domains within a CAR construct influence CAR T cell function and fate, and clinical experience of autologous anti-CD19 CAR T cell therapies suggests that costimulatory domains have differential impacts on CAR T cell kinetics, cytotoxic function and potentially safety profile. The clinical impacts of combining costimulatory domains and of alternative costimulatory domains are not yet clearly established, and may be construct- and disease-specific. The aim of this review is to summarise the function and effect of established and emerging costimulatory domains and their combinations within CAR T cells.
Project description:Patients with small cell lung cancer (SCLC) generally have a poor prognosis and a median overall survival of only about 13 months, indicating the urgent need for novel therapies. Delta-like protein 3 (DLL3) has been identified as a tumor-specific cell surface marker on neuroendocrine cancers, including SCLC. In this study, we developed a chimeric antigen receptor (CAR) against DLL3 that displays antitumor efficacy in xenograft and murine SCLC models. CAR T cell expression of the proinflammatory cytokine IL-18 greatly enhanced the potency of DLL3-targeting CAR T cell therapy. In a murine metastatic SCLC model, IL-18 production increased the activation of both CAR T cells and endogenous tumor-infiltrating lymphocytes. We also observed an increased infiltration, repolarization, and activation of antigen-presenting cells. Additionally, human IL-18-secreting anti-DLL3 CAR T cells showed an increased memory phenotype, less exhaustion, and induced durable responses in multiple SCLC models, an effect that could be further enhanced with anti-PD-1 blockade. All together, these results define DLL3-targeting CAR T cells that produce IL-18 as a potentially promising novel strategy against DLL3-expressing solid tumors.
Project description:Chimeric antigen receptor (CAR)-T cell therapy is a new class of cellular immunotherapies that involves ex vivo genetic modification of T cells to incorporate an engineered CAR. After infusion into the patient, the CAR-expressing T cells recognize specific tumor targets and induce an immune response against them. The technology utilized is fundamentally different from previously available cancer treatments. Currently, most CAR-T cell therapies use autologous T cells. Tisagenlecleucel (formerly CTL019) is an anti-CD19 CAR-T cell therapy that was recently approved in the United States for the treatment of pediatric and young adult patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). Tisagenlecleucel has shown robust in vivo expansion and long-term persistence, clinically meaningful durable response and remission rates, and overall survival benefit in pediatric and young adult patients with relapsed/refractory B-ALL and in relapsed/refractory diffuse large B-cell lymphoma. Common adverse events (AEs) include cytokine release syndrome, which may require hospitalization and admission to an intensive care unit, neurological toxicities, and B-cell aplasia. These AEs are manageable when treated by an appropriately trained team. Additional research is required to further develop AE management protocols. In this review, we describe regulatory requirements, clinical considerations, and site-level requirements for clinical study implementation of CAR-T cell therapy in Europe. We also provide a case study of the European experience from the first global clinical trial for tisagenlecleucel, which may serve as a useful starting point for investigators and clinicians looking to implement CAR-T cell therapy at their institutions.