Project description:With the explosive economic development of China over the past few decades, air pollution has attracted increasing global concern. Using satellite-based PM2.5 data from 2000 to 2015, we found that the available emissions of atmospheric compositions show similar yearly variation trends to PM2.5, even if the synchronization is not met for each composition, implying that the intensity of anthropogenic emissions dominates the temporal variation of PM2.5 in East China. Empirical orthogonal function analysis demonstrates that the dominant variability in the seasonal PM2.5 is closely associated with climate circulation transformation, incarnated as the specific climate index such as the Asia Polar Vortex intensity in spring, the Northern Hemisphere Subtropical High Ridge Position for the leading mode and the Kuroshio Current SST for the second mode in summer, the Asia Polar Vortex Area for the leading mode and the Pacific Polar Vortex Intensity for the second mode in autumn, the NINO A SSTA for the leading mode and the Pacific Decadal Oscillation for the second mode in winter. Therefore, apart from anthropogenic emissions effects, our results also provide robust evidence that over the past 16 years the climate factor has played a significant role in modulating PM2.5 in eastern China.
Project description:The aim of this study was to describe gene copy number variation in Plasmodium falciparum parasites sourced from high vs. low malaria transmission settings in east Africa in order to test the hypothesis that malaria parasites are locally adapted to their environment. In three separate experiments, parasites from ‘High’ vs. ‘Low’ transmission populations were taken from non-immune children and evaluated for copy number variants by microarray against a reference genome. Two of these population comparisons were geographic in nature while the third was temporal, i.e., before and after a marked decline in malaria. This study is described in Simam et al. 2018 BMC Genomics.
Project description:The Earth-observing Aqua spacecraft was launched on 4 May 2002 and has now completed 20 years of collecting and transmitting data regarding the Earth's radiation budget, atmosphere, oceans, land, and ice. Although launched with a design life of 6 years, four of its instruments continue to operate and provide high-quality data streams more than 20 years after launch. The Aqua data are readily available to users worldwide and have been used in thousands of scientific publications and in numerous practical applications, including weather forecasting, air-quality assessments, and monitoring of forest fires, dust storms, volcanic ash plumes, oil spills, and crop yields.
Project description:The aim of this study was to compare the transcriptomes of Plasmodium falciparum parasites sourced from high vs. low malaria transmission settings in east Africa in order to test the hypothesis that malaria parasites are locally adapted to their environment. In three separate experiments, parasites from ‘High’ vs. ‘Low’ transmission populations were taken from non-immune children and measured for gene expression levels by microarray against a reference genome. Two of these population comparisons were geographic in nature while the third was temporal, i.e., before and after a marked decline in malaria. This study is described in Rono MK, Nyonda MA, Simam JJ, Ngoi, JM et al. Nat Ecol Evol. PMID: .
Project description:Three decades of rapid economic development is causing severe and widespread PM2.5 (particulate matter ? 2.5 ?m) pollution in China. However, research on the health impacts of PM2.5 exposure has been hindered by limited historical PM2.5 concentration data.We estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1° resolution using the most recent satellite data and evaluated model performance with available ground observations.We developed a two-stage spatial statistical model using the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) and assimilated meteorology, land use data, and PM2.5 concentrations from China's recently established ground monitoring network. An inverse variance weighting (IVW) approach was developed to combine MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated model-predicted PM2.5 concentrations from 2004 to early 2014 using ground observations.The overall model cross-validation R(2) and relative prediction error were 0.79 and 35.6%, respectively. Validation beyond the model year (2013) indicated that it accurately predicted PM2.5 concentrations with little bias at the monthly (R(2) = 0.73, regression slope = 0.91) and seasonal (R(2) = 0.79, regression slope = 0.92) levels. Seasonal variations revealed that winter was the most polluted season and that summer was the cleanest season. Analysis of predicted PM2.5 levels showed a mean annual increase of 1.97 ?g/m(3) between 2004 and 2007 and a decrease of 0.46 ?g/m(3) between 2008 and 2013.Our satellite-driven model can provide reliable historical PM2.5 estimates in China at a resolution comparable to those used in epidemiologic studies on the health effects of long-term PM2.5 exposure in North America. This data source can potentially advance research on PM2.5 health effects in China.
Project description:We assessed the health risks of fine particulate matter (PM2.5) ambient air pollution and its trace elemental components in a rural South African community. Air pollution is the largest environmental cause of disease and disproportionately affects low- and middle-income countries. PM2.5 samples were previously collected, April 2017 to April 2018, and PM2.5 mass determined. The filters were analyzed for chemical composition. The United States Environmental Protection Agency's (US EPA) health risk assessment method was applied. Reference doses were calculated from the World Health Organization (WHO) guidelines, South African National Ambient Air Quality Standards (NAAQS), and US EPA reference concentrations. Despite relatively moderate levels of PM2.5 the health risks were substantial, especially for infants and children. The average annual PM2.5 concentration was 11 µg/m3, which is above WHO guidelines, but below South African NAAQS. Adults were exposed to health risks from PM2.5 during May to October, whereas infants and children were exposed to risk throughout the year. Particle-bound nickel posed both non-cancer and cancer risks. We conclude that PM2.5 poses health risks in Thohoyandou, despite levels being compliant with yearly South African NAAQS. The results indicate that air quality standards need to be tightened and PM2.5 levels lowered in South Africa.
Project description:In humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night. Rats were chronically instrumented with an intravesical catheter, and bladder pressure, voided volumes, and micturition frequency were measured by continuous filling cystometry during the light (inactive) or dark (active) phases of the circadian cycle. Cage activity was recorded by video during the experiment. We hypothesized that nocturnal rats entrained to a standard 12:12 light:dark cycle would show greater ambulatory activity and more frequent, smaller volume micturitions in the dark compared to the light. Rats studied during the light phase had a bladder capacity of 1.44+/-0.21 mL and voided every 8.2+/-1.2 min. Ambulatory activity was lower in the light phase, and rats slept during the recording period, awakening only to urinate. In contrast, rats studied during the dark were more active, had a lower bladder capacities (0.65+/-0.18 mL), and urinated more often (every 3.7+/-0.9 min). Average bladder pressures were not significantly different between the light and dark (13.40+/-2.49 and 12.19+/-2.85 mmHg, respectively). These results identify a day-night difference in bladder capacity and micturition frequency in chronically-instrumented nocturnal rodents that is phase-locked to the normal circadian locomotor activity rhythm of the animal. Furthermore, since it has generally been assumed that the daily hormonal regulation of renal function is a major driver of the circadian rhythm in urination, and few studies have addressed the involvement of the lower urinary tract, these results establish the bladder itself as a target for circadian regulation.
Project description:This study evaluated and improved the ability of the Community Land Model version 5.0 (CLM5.0) in simulating the diurnal land surface temperature (LST) cycle for the whole Tibetan Plateau (TP) by comparing it with Moderate Resolution Imaging Spectroradiometer satellite observations. During daytime, the model underestimated the LST on sparsely vegetated areas in summer, whereas cold biases occurred over the whole TP in winter. The lower simulated daytime LST resulted from weaker heat transfer resistances and greater soil thermal conductivity in the model, which generated a stronger heat flux transferred to the deep soil. During nighttime, CLM5.0 overestimated LST for the whole TP in both two seasons. These warm biases were mainly due to the greater soil thermal inertia, which is also related to greater soil thermal conductivity and wetter surface soil layer in the model. We employed the sensible heat roughness length scheme from Zeng, Wang & Wang (2012), the recommended soil thermal conductivity scheme from Dai et al. (2019), and the modified soil evaporation resistance parameterization, which was appropriate for the TP soil texture, to improve simulated daytime and nighttime LST, evapotranspiration, and surface (0-10 cm) soil moisture. In addition, the model produced lower daytime LST in winter because of overestimation of the snow cover fraction and an inaccurate atmospheric forcing dataset in the northwestern TP. In summary, this study reveals the reasons for biases when simulating LST variation, improves the simulations of turbulent fluxes and LST, and further shows that satellite-based observations can help enhance the land surface model parameterization and unobservable land surface processes on the TP.
Project description:BackgroundQuality improvement collaboratives (QIC) are an approach to accelerate the spread and impact of evidence-based interventions across health facilities, which are found to be particularly successful when combined with other interventions such as clinical skills training. We implemented a QIC as part of a quality improvement intervention package designed to improve newborn survival in Kenya and Uganda. We use a multi-method approach to describe how a QIC was used as part of an overall improvement effort and describe specific changes measured and participant perceptions of the QIC.MethodsWe examined QIC-aggregated run charts on three shared indicators related to uptake of evidence-based practices over time and conducted key informant interviews to understand participants' perceptions of quality improvement practice. Run charts were evaluated for change from baseline medians. Interviews were analysed using framework analysis.ResultsRun charts for all indicators reflected an increase in evidence-based practices across both countries. In Uganda, pre-QIC median gestational age (GA) recording of 44% improved to 86%, while Kangaroo Mother Care (KMC) initiation went from 51% to 96% and appropriate antenatal corticosteroid (ACS) use increased from 17% to 74%. In Kenya, these indicators went from 82% to 96%, 4% to 74% and 4% to 57%, respectively. Qualitative results indicate that participants appreciated the experience of working with data, and the friendly competition of the QIC was motivating. The participants reported integration of the QIC with other interventions of the package as a benefit.ConclusionsIn a QIC that demonstrated increased evidence-based practices, QIC participants point to data use, friendly competition and package integration as the drivers of success, despite challenges common to these settings such as health worker and resource shortages.Trial registration numberNCT03112018.