Project description:The extent of prescription and illicit drug abuse in geographically isolated rural and micropolitan communities in the intermountain western United States (US) has not been well tracked. The goal of this pilot study was to accurately measure drug dose consumption rates (DCR) between two select populations, normalize the data and compare the DCRs to similar communities. To learn about patterns of drug abuse between the two disparate communities, we used the emergent field of wastewater-based epidemiology (WBE). A rapid, quantitative and systematic process for the determination of multiple classes of prescribed and illicit drugs was applied to influent wastewater samples. Influent samples were collected over the course of three months (April to June 2019) at two wastewater treatment plants representing a small urban and a rural community. Collection of sewage influent included 24-h composite samples and the use of polar organic chemical integrative samplers (POCIS), time-weighted samplers. Using the results from the composite sampling data, DCRs per 1000 population could be calculated from the concentration data and the use of excretion correction factors. The following 18 compounds: amphetamine, methamphetamine, MDA, MDMA, morphine, 6-acetylmorphine, methadone, EDDP, codeine, benzoylecgonine, hydrocodone, hydromorphone, oxycodone, noroxycodone, ketamine, fluoxetine, tramadol, and ritalinic acid; represent a subset of the targeted analytes that were consistently measured at detectable concentration levels, and present at both sites. Following normalization of the drug measurements to influent flow rates and per capita, the small urban community demonstrated greater collective excretion rates (CER) than the rural community, with the exceptions of amphetamine and methamphetamine.
Project description:Access to near-real time opioid use data is essential to the effective management of the U.S. opioid crisis. Current narcotic data collection methods are limited by time delay and would be complimented by a rapid data acquisition technique. Use of wastewater-based epidemiology (WBE) analysis may offer access to near real-time data on opioid consumption but application in the United States has been limited. From 2015 to 2017, monthly 24-h time-weighted composite samples of municipal raw wastewater from two Midwestern U.S. cities were routinely analyzed using liquid chromatography-tandem mass spectrometry for morphine, codeine, oxycodone, heroin, fentanyl, and select opioid metabolites. Concentrations of opioids (ng/L) in raw wastewater from City 1 and 2, respectively, were: morphine (713 ± 38; 306 ± 29; detection frequency (DF): 100%), oxycodone (17.8 ± 1.1; 78 ± 6; DF: 100%), codeine (332 ± 37; 100 ± 27; DF: 93%), heroin (41 ± 16; 9 ± 11; DF: 81%), and fentanyl (1.7 ± 0.2; 1.0 ± 0.5; DF: 62%). Average opioid consumption rates estimated using WBE ranged between 9 and 2590 mg/day/1000 persons. Anticipated overdoses and overdose-deaths calculated from analyte concentrations in wastewater forecasted 200 opioid-related overdoses/year and 39 opioid related overdose-deaths/year across the two cities during the year 2016, which aligned well with observed coroner-reported opioid deaths. This long-term U.S. screening study of opioids in wastewater was the first to utilize wastewater epidemiological data to estimate the number of expected overdose and overdose-deaths, and to identify detectable levels of the powerful synthetic opioid fentanyl in community wastewater consistently over the course of one whole year.
Project description:Wastewater-based epidemiology (WBE) approach for COVID-19 surveillance is largely based on the assumption of SARS-CoV-2 RNA shedding into sewers by infected individuals. Recent studies found that SARS-CoV-2 RNA concentration in wastewater (CRNA) could not be accounted by the fecal shedding alone. This study aimed to determine potential major shedding sources based on literature data of CRNA, along with the COVID-19 prevalence in the catchment area through a systematic literature review. Theoretical CRNA under a certain prevalence was estimated using Monte Carlo simulations, with eight scenarios accommodating feces alone, and both feces and sputum as shedding sources. With feces alone, none of the WBE data was in the confidence interval of theoretical CRNA estimated with the mean feces shedding magnitude and probability, and 63% of CRNA in WBE reports were higher than the maximum theoretical concentration. With both sputum and feces, 91% of the WBE data were below the simulated maximum CRNA in wastewater. The inclusion of sputum as a major shedding source led to more comparable theoretical CRNA to the literature WBE data. Sputum discharging behavior of patients also resulted in great fluctuations of CRNA under a certain prevalence. Thus, sputum is a potential critical shedding source for COVID-19 WBE surveillance.
Project description:Occurrence and removal of six high-production high-volume neonicotinoids was investigated in 13 conventional wastewater treatment plants (WWTPs) and one engineered wetland. Flow-weighted daily composites were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing the occurrence of imidacloprid, acetamiprid, and clothianidin at ng/L concentrations in WWTP influent (60.5 ± 40.0; 2.9 ± 1.9; 149.7 ± 289.5, respectively) and effluent (58.5 ± 29.1; 2.3 ± 1.4; 70.2 ± 121.8, respectively). A mass balance showed insignificant removal of imidacloprid (p = 0.09, CI = 95%) and limited removal of the sum of acetamiprid and its degradate, acetamiprid-N-desmethyl (18 ± 4%, p = 0.01, CI = 95%). Clothianidin was found only intermittently, whereas thiamethoxam, thiacloprid, and dinotefuran were never detected. In the wetland, no removal of imidacloprid or acetamiprid was observed. Extrapolation of data from 13 WWTPs to the nation as a whole suggests annual discharges on the order of 1000-3400 kg/y of imidacloprid contained in treated effluent to surface waters nationwide. This first mass balance and first United States nationwide wastewater reconnaissance identified imidacloprid, acetamiprid, and clothianidin as recalcitrant sewage constituents that persist through wastewater treatment to enter water bodies at significant loadings, potentially harmful to sensitive aquatic invertebrates.
Project description:BackgroundDental therapists (DTs) are primary care dental providers, used globally, and were introduced in the United States (US) in 2005. DTs have now been adopted in 13 states and several Tribal nations.ObjectivesThe objective of this study is to qualitatively examine the drivers and outcomes of the US dental therapy movement through a health equity lens, including community engagement, implementation and dissemination, and access to oral health care.MethodsThe study compiled a comprehensive document library on the dental therapy movement including literature, grant documents, media and press, and gray literature. Key stakeholder interviews were conducted across the spectrum of engagement in the movement. Dedoose software was used for qualitative coding. Themes were assessed within a holistic model of oral health equity.FindingsHealth equity is a driving force for dental therapy adoption. Community engagement has been evident in diverse statewide coalitions. National accreditation standards for education programs that can be deployed in 3 years without an advanced degree reduces educational barriers for improving workforce diversity. Safe, high-quality care, improvements in access, and patient acceptability have been well documented for DTs in practice.ConclusionHaving firmly taken root politically, the impact of the dental therapy movement in the US, and the long-term health impacts, will depend on the path of implementation and a sustained commitment to the health equity principle.
Project description:Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring SARS-CoV-2 infection trends throughout the COVID-19 pandemic. Population biomarkers that measure the relative human fecal contribution to normalize SARS-CoV-2 wastewater concentrations are needed for improved analysis and interpretation of community infection trends. The Centers for Disease Control and Prevention National Wastewater Surveillance System (CDC NWSS) recommends using the wastewater flow rate or human fecal indicators as population normalization factors. However, there is no consensus on which normalization factor performs best. In this study, we provided the first multistate assessment of the effects of flow rate and human fecal indicators (crAssphage, F+ Coliphage, and PMMoV) on the correlation of SARS-CoV-2 wastewater concentrations and COVID-19 cases using the CDC NWSS dataset of 182 communities across six U.S. states. Flow normalized SARS-CoV-2 wastewater concentrations produced the strongest correlation with COVID-19 cases. The correlation from the three human fecal indicators were significantly lower than flow rate. Additionally, using reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) significantly improved correlation values over samples that were analyzed with real-time reverse transcription quantitative polymerase chain reaction (rRT-qPCR). Our assessment shows that utilizing flow normalization with RT-ddPCR generate the strongest correlation between SARS-CoV-2 wastewater concentrations and COVID-19 cases.
Project description:Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments.
Project description:We monitored the concentration of indicator viruses crAssphage and pepper mild mottle virus (PMMoV) and human pathogen adenovirus (HAdV) in influent from a wastewater treatment plant in Brisbane, Australia in 1-h and 24-h composite samples. Over three days of sampling, the mean concentration of crAssphage gene copies (GC)/mL in 24-h composite samples did not differ significantly (p = 0.72-0.92), while for PMMoV GC/mL (p value range: 0.0002-0.0321) and HAdV GC/mL (p value range: 0.0028-0.0068) significant differences in concentrations were observed on one day of sampling compared to the other two. For all three viruses, the variation observed in 1-h composite samples was greater than the variation observed in 24-h composite samples. For crAssphage, in 54.1% of 1-h composite samples, the concentration was less than that observed in 24-h composite samples; whereas for PMMoV and HAdV the concentration was less in 79.2 and 70.9% of 1-h composite samples, respectively, compared to the relevant 24-h composite samples. Similarly, the concentration of crAssphage in 1-h compared to 24-h composite samples did not differ (p = 0.1082) while the concentrations of PMMoV (p < 0.0001) and HAdV (p < 0.0001) in 1-h composite samples were significantly different from 24-h composite samples. These results suggest that 24-h composite samples offer increased analytical sensitivity and decreased variability compared to 1-h composite samples when monitoring wastewater, especially for pathogenic viruses with low infection rates within a community. Thus, for wastewater-based epidemiology applications, 24-h composite samples are less likely to produce false negative results and erroneous public health information.