Project description:The topic of peroxisome proliferator-activated receptors has been developed in the field of hepatology allowing envisaging therapeutic strategies for the most frequent chronic liver diseases such as chronic infection with hepatitis C virus (HCV). PPARs contribute to wide physiological processes within the liver such as lipid/glucid metabolisms, inflammatory response, cell differentiation, and cell cycle. In vitro experiments and animal studies showed that PPARα discloses anti-inflammatory property, and PPARγ discloses anti-inflammatory, antifibrogenic, and antiproliferative properties in the liver. Experimental and human studies showed impaired PPARs expression and function during HCV infection. The available nonhepatotoxic agonists of PPARs may constitute a progress in the therapeutic management of patients chronically infected with HCV.
Project description:Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction, preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we conducted a literature review using the MEDLINE and LIVIVO databases. The search terms "peroxisome proliferator-activated receptor", "PPAR", and "preeclampsia" were employed and we were able to identify 35 relevant studies published between 2002 and 2022. Different study groups reached contradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ agonists alone, or in combination with well-established pharmaceutical agents, were determined to represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a significant role in preeclampsia.
Project description:Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Project description:Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Project description:BACKGROUND:Modulation of midbrain dopamine neurons by nicotinic acetylcholine receptors (nAChRs) plays an important role in behavior, cognition, motivation, and reward. Specifically, nAChRs containing beta2 subunits (beta2-nAChRs) switch dopamine cells from a resting to an excited state. However, how beta2-nAChRs can be modulated and thereby how dopamine firing activity is affected remains elusive. Because changes in dopamine cell activity are reflected in the dynamics of microcircuits generating altered responses to stimuli and inputs, factors regulating their state are fundamental. Among these, endogenous ligands to the nuclear receptor-transcription factor peroxisome proliferator-activated receptors type-alpha (PPARalpha) have been recently found to suppress nicotine-induced responses of dopamine neurons. METHODS:We used both in vitro and in vivo electrophysiological techniques together with behavioral analysis to investigate on the effects of modulation of PPARalpha in Sprague-Dawley rat and C57BLJ/6 mouse dopamine neurons and their interactions with beta2-nAChRs. To this aim, we took advantage of a selective reexpression of beta2-nAChR exclusively in dopamine cells by stereotaxically injecting a lentiviral vector in the mouse ventral tegmental area. RESULTS:We found that activation of PPARalpha decreases in vitro both dopamine cell activity and ventral tegmental area net output through negative modulation of beta2-nAChRs. Additionally, PPARalpha activation in vivo reduces both the number of spontaneously active dopamine neurons and nicotine-induced increased locomotion. CONCLUSIONS:Our combined findings suggest PPARalpha ligands as important negative modulators of beta2-nAChRs on dopamine neurons. Thus, PPARalpha ligands might prove beneficial in treating disorders in which dopamine dysfunction plays a prominent role, such as schizophrenia and nicotine addiction.
Project description:Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming a major cause of chronic liver disease worldwide. Concurrent to an increase in NAFLD prevalence, there is an increase in the obesity epidemic and the correlated insulin-resistant state. It is a challenge to diagnose NAFLD because many patients are asymptomatic until the later stages of disease. The most common symptoms include fatigue, malaise, and discomfort in the right upper quadrant. The major and most accurate tool to clinically diagnose NAFLD is a liver biopsy, followed by histological analysis. However, this procedure is invasive and often carries a high risk of complications. Currently, there are no officially approved medications for the treatment of NAFLD. Although lifestyle modifications with proper diet and exercise have been shown to be beneficial, this has been difficult to achieve and sustain for many patients. Effective pharmacological treatments are still lacking; therefore, additional research to identify novel drugs is clearly warranted. PPARs are promising drug targets for the management of NAFLD and its related conditions of type 2 diabetes mellitus and cardiovascular disease. In this review, we provide an overview of recent studies on the association of PPARs and NAFLD.
Project description:The complexity of the pathogenetic mechanisms of the development of chronic inflammation in asthma determines its heterogeneity and insufficient treatment effectiveness. Nuclear transcription factors, which include peroxisome proliferator-activated receptors, that is, PPARs, play an important role in the regulation of initiation and resolution of the inflammatory process. The ability of PPARs to modulate not only lipid homeostasis but also the activity of the inflammatory response makes them an important pathogenetic target in asthma therapy. At present, special attention is focused on natural (polyunsaturated fatty acids (PUFAs), endocannabinoids, and eicosanoids) and synthetic (fibrates, thiazolidinediones) PPAR ligands and the study of signaling mechanisms involved in the implementation of their anti-inflammatory effects in asthma. This review summarizes current views on the structure and function of PPARs, as well as their participation in the pathogenesis of chronic inflammation in asthma. The potential use of PPAR ligands as therapeutic agents for treating asthma is under discussion.
Project description:The peroxisome proliferator-activated receptor (PPAR) family includes three transcription factors: PPARα, PPARβ/δ, and PPARγ. PPAR are nuclear receptors activated by oxidised and nitrated fatty acid derivatives as well as by cyclopentenone prostaglandins (PGA2 and 15d-PGJ2) during the inflammatory response. This results in the modulation of the pro-inflammatory response, preventing it from being excessively activated. Other activators of these receptors are nonsteroidal anti-inflammatory drug (NSAID) and fatty acids, especially polyunsaturated fatty acid (PUFA) (arachidonic acid, ALA, EPA, and DHA). The main function of PPAR during the inflammatory reaction is to promote the inactivation of NF-κB. Possible mechanisms of inactivation include direct binding and thus inactivation of p65 NF-κB or ubiquitination leading to proteolytic degradation of p65 NF-κB. PPAR also exert indirect effects on NF-κB. They promote the expression of antioxidant enzymes, such as catalase, superoxide dismutase, or heme oxygenase-1, resulting in a reduction in the concentration of reactive oxygen species (ROS), i.e., secondary transmitters in inflammatory reactions. PPAR also cause an increase in the expression of IκBα, SIRT1, and PTEN, which interferes with the activation and function of NF-κB in inflammatory reactions.