Project description:Peroxisome proliferator-activated receptor ? (PPAR?) may serve as a useful target for drug development in non-diabetic diseases. However, some colorectal cancer cells are resistant to PPAR? agonists by mechanisms that are poorly understood. Here, we provide the first evidence that elevated PPAR? expression and/or activation of PPAR? antagonize the ability of PPAR? to induce colorectal carcinoma cell death. More importantly, the opposing effects of PPAR? and PPAR? in regulating programmed cell death are mediated by survivin and caspase-3. We found that activation of PPAR? results in decreased survivin expression and increased caspase-3 activity, whereas activation of PPAR? counteracts these effects. Our findings suggest that PPAR? and PPAR? coordinately regulate cancer cell fate by controlling the balance between the cell death and survival and demonstrate that inhibition of PPAR? can reprogram PPAR? ligand-resistant cells to respond to PPAR? agonists.
Project description:Peroxisome proliferator-activated receptor gamma agonists have been proposed as breast cancer preventives. Individuals who carry a mutated copy of BRCA1, DNA repair-associated gene, are at increased risk for development of breast cancer. Published data in the field suggest there could be interactions between peroxisome proliferator-activated receptor gamma and BRCA1 that could influence the activity of peroxisome proliferator-activated receptor gamma agonists for prevention. This review explores these possible interactions between peroxisome proliferator-activated receptor gamma, peroxisome proliferator-activated receptor gamma agonists and BRCA1 and discusses feasible experimental directions to provide more definitive information on the potential connections.
Project description:ContextObesity is a multifactorial disorder, that is, a disease determined by the combined effect of genes and environment. In this context, polygenic approaches are needed.ObjectiveTo investigate the possibility of the existence of a crosstalk between the CALPAIN 10 homologue CALPAIN 5 and nuclear receptors of the peroxisome proliferator-activated receptors family.DesignCross-sectional, genetic association study and gene-gene interaction analysis.SubjectsThe study sample comprise 1953 individuals, 725 obese (defined as body mass index > or = 30) and 1228 non obese subjects.ResultsIn the monogenic analysis, only the peroxisome proliferator-activated receptor delta (PPARD) gene was associated with obesity (OR = 1.43 [1.04-1.97], p = 0.027). In addition, we have found a significant interaction between CAPN5 and PPARD genes (p = 0.038) that reduces the risk for obesity in a 55%.ConclusionOur results suggest that CAPN5 and PPARD gene products may also interact in vivo.
Project description:Metabolic dysfunction-associated steatohepatitis (MASH), an advanced stage of metabolic dysfunction-associated steatotic liver disease (MASLD), is characterized by significant hepatic fibrosis and inflammation. The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist IVA337 (lanifibranor) has demonstrated potential as an anti-MASH therapeutic, although its mechanisms of action remain incompletely understood. This study explores the effects and mechanisms of IVA337 using two distinct MASH models: 2D primary human hepatic stellate cells (HSCs) stimulated with TGFß1, and 3D liver spheroids comprising primary hepatocytes, HSCs, and nonparenchymal cells. In TGFß1-stimulated HSCs, IVA337 effectively suppressed the expression of fibrosis-related genes, including PAI1, COL1A1, and SMA, as well as the inflammatory gene IL-6. We successfully established 3D mouse and human liver spheroid models of MASH, characterized by reduced lipid content and elevated fibrotic gene expression. IVA337 treatment not only attenuated fibrotic gene expression but also restored lipid content in the MASH spheroids, as evidenced by BODIPY staining. Immunostaining further confirmed a reduction in SMA and collagen levels following IVA337 treatment. Bulk RNA sequencing and Gene Ontology (GO) analysis revealed lipid metabolism-related genes as key effectors downstream of IVA337. Additionally, IVA337 modulated multiple signaling pathways, including IL-17, TNF, NF-kappa B, PI3K-AKT, and MAPK. Collectively, these findings demonstrate that IVA337 effectively mitigates fibrosis development in both 2D and 3D MASH models by restoring lipid homeostasis and regulating crucial fibrotic and inflammatory pathways.
Project description:The topic of peroxisome proliferator-activated receptors has been developed in the field of hepatology allowing envisaging therapeutic strategies for the most frequent chronic liver diseases such as chronic infection with hepatitis C virus (HCV). PPARs contribute to wide physiological processes within the liver such as lipid/glucid metabolisms, inflammatory response, cell differentiation, and cell cycle. In vitro experiments and animal studies showed that PPARα discloses anti-inflammatory property, and PPARγ discloses anti-inflammatory, antifibrogenic, and antiproliferative properties in the liver. Experimental and human studies showed impaired PPARs expression and function during HCV infection. The available nonhepatotoxic agonists of PPARs may constitute a progress in the therapeutic management of patients chronically infected with HCV.
Project description:Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction, preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we conducted a literature review using the MEDLINE and LIVIVO databases. The search terms "peroxisome proliferator-activated receptor", "PPAR", and "preeclampsia" were employed and we were able to identify 35 relevant studies published between 2002 and 2022. Different study groups reached contradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ agonists alone, or in combination with well-established pharmaceutical agents, were determined to represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a significant role in preeclampsia.
Project description:Peroxisome proliferator-activated receptor-alpha (PPARalpha) belongs to the nuclear receptor (NR) family of transcription factors and regulates lipid and glucose metabolism. Like other NRs, the regulation of gene expression by PPARalpha depends on cofactor recruitment to the transcription complex and multiple protein-protein interactions. In this study, Murine Double Minute 2 (MDM2), an E3 ubiquitin ligase, is identified as a PPARalpha-interacting protein that regulates PPARalpha transcriptional activity. MDM2 modulated the transcriptional activity of PPARalpha and PPARbeta/delta, but not PPARgamma in reporter assays. Knockdown of MDM2 by small interfering RNA in rat hepatoma cells inhibited ligand-induced mRNA levels of several PPARalpha target genes involved in lipid metabolism. MDM2 associated with PPARalpha on target gene promoters, and this association increased in response to Wy14,643 treatment. MDM2 interacted with PPARalpha and this interaction occurred with the A/B domain of PPARalpha. Coexpression of MDM2 increased PPARalpha ubiquitination and the E3 ubiquitin ligase activity of MDM2 affected PPARalpha protein expression and transcriptional activity. MDM2 expression was decreased in response to clofibrate in wild-type (WT), but not in PPARalpha null mice, indicating a PPARalpha-dependent regulation. These studies identify a role for MDM2 in regulating PPARalpha-mediated pathways of lipid metabolism.
Project description:Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Project description:Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Project description:Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO(2) have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII(-/-) MEFs compared with CAIII(+/+) cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-γ2 (PPARγ2) and CCAAT/enhancer binding protein-α. We found a considerable (approximately 1000-fold) increase in the PPARγ2 expression in the CAIII(-/-) MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPARγ2 and FABP4. When both CAIII and PPARγ2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPARγ2 gene expression.