Project description:The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.
Project description:IntroductionLactic acid bacteria (LAB) are Gram-positive bacteria that produce lactic acid during fermentation, with some strains enhancing host health by modulating the gut microbiota, boosting immune responses, and reducing inflammation.MethodsIn this study, 6 LAB strains were isolated from two dog milk samples, and their probiotic properties were comprehensively evaluated. The evaluation included growth properties, stress resistance, antipathogen activity, adhesion activity, safety assessment, antioxidant capacity, and prebiotic metabolites assessment.ResultsIn comparison to the control strain Lactobacillus rhamnosus LGG, all 6 LAB isolates exhibited favorable probiotic properties. Additionally, the results of the antioxidant tests indicated that these strains demonstrated high tolerance to 0.5 mmol/L H2O2 and exhibited significant scavenging abilities for the free radicals 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). Furthermore, the 6 LAB isolates were found to produce elevated concentrations of prebiotic metabolites, including exopolysaccharides (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH).DiscussionThis study presents a comprehensive analysis of LAB isolates derived from canine milk. These isolates exhibited multifunctional properties, with strain L221 performing the best overall, making it a promising candidate for probiotic use in dogs.
Project description:Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good β-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.
Project description:BackgroundThe health-promoting effects along with global economic importance of consuming food products supplemented with probiotic microorganisms encouraged the researchers to discover new probiotics.ResultsFourteen lactic acid bacterial isolates were identified as Enterococcus mediterraneensis, Lactobacillus fermentum, and Streptococcus lutetiensis by 16S rRNA gene sequencing, and in vitro characterized for their actual probiotic potential. All E. mediterraneensis isolates were resistant to clindamycin, whereas Lb. fermentum isolates were resistant to ampicillin, clindamycin, and vancomycin. The E. mediterraneensis and Lb. fermentum isolates displayed high overall digestive survival, ranged from 1.35 ± 0.06 to 32.73 ± 0.84% and from 2.01 ± 0.01 to 23.9 ± 1.85%, respectively. All isolates displayed cell surface hydrophobicity, ranged between 15.44 ± 6.72 and 39.79 ± 2.87%. The strongest auto-aggregation capability, higher than 40%, was observed for most E. mediterraneensis and Lb. fermentum isolates. The E. mediterraneensis isolates (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) exhibited the greatest co-aggregation with Salmonella typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Bacillus cereus. Fifty-seven and fourteen hundredth percent of E. mediterraneensis isolates could be considered bacteriocinogenic against E. coli O157:H7, B. cereus, and S. aureus.ConclusionThis study is the first one to isolate Enterococcus mediterraneensis in Egypt and to characterize it as new species of probiotics globally. According to the results, E. mediterraneensis (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) are the most promising in vitro probiotic candidates.
Project description:The antibiotic resistances of 45 lactic acid bacteria strains belonging to the genera Lactobacillus, Streptococcus, Lactococcus, Pediococcus, and Leuconostoc were investigated. The objective was to determine antibiotic resistances and to verify these at the genetic level, as is currently suggested by the European "qualified presumption of safety" safety evaluation system for industrial starter strains. In addition, we sought to pinpoint possible problems in resistance determinations. Primers were used to PCR amplify genes involved in beta-lactam antibiotic, chloramphenicol, tetracycline, and erythromycin resistance. The presence of ribosomal protection protein genes and the ermB gene was also determined by using a gene probe. Generally, the incidences of erythromycin, chloramphenicol, tetracycline, or beta-lactam resistances in this study were low (<7%). In contrast, aminoglycoside (gentamicin and streptomycin) and ciprofloxacin resistances were higher than 70%, indicating that these may constitute intrinsic resistances. The genetic basis for ciprofloxacin resistance could not be verified, since no mutations typical of quinolone resistances were detected in the quinolone determining regions of the parC and gyrA genes. Some starter strains showed low-level ampicillin, penicillin, chloramphenicol, and tetracycline resistances, but no known resistance genes could be detected. Although some strains possessed the cat gene, none of these were phenotypically resistant to chloramphenicol. Using reverse transcription-PCR, these cat genes were shown to be silent under both inducing and noninducing conditions. Only Lactobacillus salivarius BFE 7441 possessed an ermB gene, which was encoded on the chromosome and which could not be transferred in filter-mating experiments. This study clearly demonstrates problems encountered with resistance testing, in that the breakpoint values are often inadequately identified, resistance genes may be present but silent, and the genetic basis and associated resistance mechanisms toward some antibiotics are still unknown.
Project description:Lactic acid bacteria (LAB) are believed to have health-promoting properties to the host and can be used in therapeutics interventions; intriguingly, they have the property to produce bio-preservatives substances. Therefore, this study aimed to mine probiotics and evaluate their safety, functional properties, and cholesterol-lowering capability. Seven potential probiotic strains were compared from 56 LAB strains isolated from traditional Chinese fermented milk. The results showed that all tested strains are tolerant to gastric acidity (45.5-83.26) and bile salts (11.92-92.91%) and have antibacterial activity against Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922. Likewise, it lowered the cholesterol levels in vitro by live cells (26.57-45.76%) and dead cells (29.53-50.97%) with remarkable aggregation ability (13.8-43.71%). Antioxidant properties and produce short chain fatty acids (SCFAs) were strain-dependent features. Upon assessment of the safety, Enterococcus faecium NWAFU-BIO-AS14 exhibited virulence factors genes (VFs) of (mur-2ed, odc, and tet(K)) and + hemolysis activity. While Enterococcus faecium NWAFU-BIO-A-B24 and Limosilactobacillus fermentum NWAFU-BIO-B-S6 have VFs of (odc, vanC2, and ant(6)-Ia). Limosilactobacillus fermentum NWAFU-BIO-D-B2 has only (odc). Thus, they are not considered as safe probiotics. In contrast, Lactiplantibacillus plantarum NWAFU-BIO-BS29, Companilactobacillus crustorum NWAFU-BIO-AS16, and Lactobacillus gallinarum NWAFU-BIO-D-S7 are the safest and best strains, respectively, due to the absence of 16 VFs and their sensitivity to antibiotics such as kanamycin, erythromycin, tetracycline, gentamycin, vancomycin, streptomycin, chloramphenicol, and ampicillin. Accordingly, these strains have a high potentiality to be used as starter cultures or safely applied as perfect probiotics in functionals food and feed.Supplementary informationThe online version contains supplementary material available at 10.1007/s13205-022-03403-z.
Project description:This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.
Project description:Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day.
Project description:The present work aimed at tracking intentionally inoculated lactic acid bacteria (LAB) strains in yogurt and probiotic powder. Leuconostoc(Leu.)mesenteroides (11251), Lactobacillus(L.)brevis (B151), and Lactobacillus plantarum (LB41K) strains were tracked in yogurt, and L. plantarum (LB41P) was tracked in a commercial probiotic powder. The yogurt was intentionally inoculated with the selected bacterial strains. Two types of yogurt with known and unknown bacterial pools were utilized. The standard 16S rRNA gene sequencing was used to evaluate the initial screening. The molecular typing tools, random amplified polymorphic DNA (RAPD), repetitive element palindromic PCR (rep-PCR), and comparative gene sequence analysis of selected housekeeping loci were used to track the inoculated dubious strains. Out of 30 random selections for each inoculation, the developed method identified seven (11251), nine (B151), and five (LB41K) colonies in the yogurt. The validation was performed by identifying 7 colonies (LB41P) out of 30 in the probiotic powder. The DNA banding profiles and the gene sequence alignments led to the identification of the correct inoculated strains. Overall, the study summarizes the use of molecular tools to identify the deliberately inoculated LAB strains. In conclusion, the proposed polyphasic approach effectively tracked the intentionally inoculated strains: Leu. mesenteroides, L. brevis, and L. plantarum (LB41K) in yogurt and L. plantarum (LB41P) in probiotic powder. The study demonstrates how to track industrially relevant misused LAB strains in marketable food products.