Project description:IntroductionLactic acid bacteria (LAB) are Gram-positive bacteria that produce lactic acid during fermentation, with some strains enhancing host health by modulating the gut microbiota, boosting immune responses, and reducing inflammation.MethodsIn this study, 6 LAB strains were isolated from two dog milk samples, and their probiotic properties were comprehensively evaluated. The evaluation included growth properties, stress resistance, antipathogen activity, adhesion activity, safety assessment, antioxidant capacity, and prebiotic metabolites assessment.ResultsIn comparison to the control strain Lactobacillus rhamnosus LGG, all 6 LAB isolates exhibited favorable probiotic properties. Additionally, the results of the antioxidant tests indicated that these strains demonstrated high tolerance to 0.5 mmol/L H2O2 and exhibited significant scavenging abilities for the free radicals 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). Furthermore, the 6 LAB isolates were found to produce elevated concentrations of prebiotic metabolites, including exopolysaccharides (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH).DiscussionThis study presents a comprehensive analysis of LAB isolates derived from canine milk. These isolates exhibited multifunctional properties, with strain L221 performing the best overall, making it a promising candidate for probiotic use in dogs.
Project description:Lactic acid bacteria (LAB), which are characterized by producing various functional metabolites, including antioxidants, organic acids, and antimicrobial compounds, are widely used in the food industry to improve gut health and prevent the growth of spoilage microorganisms. With the continual incidence of foodborne disease and advocacy of consumers for gut health, LAB have been designated as vital biopreservative agents in recent years. Therefore, LAB with excellent antimicrobial properties and environmental tolerance should be explored further. In this study, we focus on screening the LAB strains from a specialty pig (Bamei pig) feces of the Tibetan plateau region and determine their antimicrobial properties and environmental tolerance to evaluate their potential probiotic values. A total of 116 LAB strains were isolated, from which the LAB strain Qinghai (QP)28-1 was identified as Lactiplantibacillus (L.) plantarum subsp. plantarum using 16S rDNA sequencing and recA amplification, showing the best growth capacity, acid production capacities, environmental tolerance, hydrophobicity, antibiotic susceptibility, and bacteriocin production capacity. Furthermore, this strain inhibited the growth of multiple pathogens by producing organic acids and bacteriocin. These bacteriocin-encoding genes were identified using PCR amplification, including plnS, plnN, and plnW. In conclusion, bacteriocin-producing L. plantarum subsp. plantarum QP28-1 stands out among these 116 LAB strains, and was considered to be a promising strain used for LAB-related food fermentation. Moreover, this study provides a convenient, comprehensive, and shareable profile for screening of superior functional and bacteriocin-producing LAB strains, which can be used in the food industry.
Project description:Feta cheese is the most recognized Greek Protected Designation of Origin (PDO) product in the world. The addition of selected autochthonous lactic acid bacteria (LAB) strains to cheese milk as adjunct cultures is gaining more attention, since they can impact the nutritional, technological and sensory properties of cheeses, as well as improve the safety of the product. The aim of this study was to produce Feta cheese with enhanced quality and safety, and distinctive organoleptic characteristics by applying autochthonous lactic acid bacteria (LAB) with multi-functional properties as adjunct cultures. Feta cheeses were produced with the commercial lactococcal starter culture and the addition of 9 LAB strains (Lactococcus lactis SMX2 and SMX16, Levilactobacillus brevis SRX20, Lacticaseibacillus paracasei SRX10, Lactiplantibacillus plantarum FRX20 and FB1, Leuconostoc mesenteroides FMX3, FMX11, and FRX4, isolated from artisanal Greek cheeses) in different combinations to produce 13 cheese trials (12 Feta trials with the adjunct LAB isolates and the control trial). In addition, Feta cheese manufactured with FMX3 and SMX2 and control Feta cheese were artificially inoculated (4 log CFU/g) with Listeria monocytogenes (a cocktail of 4 acid or non-acid adapted strains). Cheese samples were monitored by microbiological and physicochemical analyses during ripening, and microbiological, physicochemical, molecular and sensory analyses during storage at 4°C. The results showed that after manufacture, the LAB population was ca. 9.0 log CFU/g at all samples, whereas during storage, their population declined to 6.5-7.0 log CFU/g. In the Listeria inoculated samples, Listeria was absent after 60 days (end of ripening) and after 90 days in the adjunct culture, and in the control trials, respectively. Moreover, the addition of selected strains, especially Lcb. paracasei SRX10, led to cheeses with desirable and distinctive organoleptic characteristics. Furthermore, randomly amplified polymorphic PCR (RAPD-PCR) molecular analysis confirmed that the multi-functional LAB strains were viable by the end of storage. Overall, the results of this study are promising for the use of autochthonous strains in various combinations with the commercial starter culture to satisfy industry requirements and consumer demands for traditional and high added value fermented products.
Project description:The multifunctional properties of autochthonous lactic acid bacteria can be of use for enhancing the sensorial properties of food, as well as in food preservation. An initial screening for antimicrobial, proteolytic, and lipolytic capacities was done in 214 presumptive lactic acid bacteria isolates obtained from Chihuahua cheese manufacturing and during a ripening period of nine months. The antimicrobial screening was done by spot-on-the-lawn tests, using Listeria monocytogenes and Escherichia coli as indicator microorganisms; proteolysis was tested in casein-peptone agar and lipolysis in Mann-Rogosa-Sharpe (MRS)-tributyrin agar. More than 90% of the isolates hydrolyzed the casein, but only 30% hydrolyzed tributyrin; the inhibition of L. monocytogenes in the spot-on-the-lawn assay was used to select 39 isolates that had a bigger inhibition zone (>11.15 mm ± 0.3) than the control (Nisin producer Lactococcus lactis BS-10 Chr Hansen). The selected isolates were grown in MRS to obtain the neutralized cell-free supernatants and verify their antimicrobial activity by agar diffusion and the percentage of growth inhibition techniques. The selected isolates were also growth in casein peptone broth, and the cell-free supernatants were used for the determination of antioxidant activity by the radical scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) techniques. The results were analyzed to identify similarities by cluster analysis, based on their antimicrobial and antioxidant capacities. The isolates were arranged into six clusters; one cluster that included 12 isolates demonstrated L. monocytogenes (784-2811 mm2/mL AU by agar diffusion assay) and E. coli (41%-47% growth inhibition) antimicrobial activity. The isolates clustered in these groups also showed competitive inhibition of both radicals (11%-19% of DPPH and 50%-60% of ABTS). The isolates from cluster one were also identified by 16S rDNA amplification and were identified as Enterococcus faecium. Traditional products such as Chihuahua cheese can be a source or lactic acid bacteria with metabolic properties that can be used in food preparation and preservation.
Project description:Preventing food spoilage without the addition of chemical food additives, while increasing functional properties of wheat-based bakery products, is an increasing demand by the consumers and a challenge for the food industry. Within this study, lactic acid bacteria (LAB) isolated from sourdough were screened in vitro for the ability to utilize the typical wheat carbohydrates, for their antimicrobial and functional properties. The dual culture overlay assay revealed varying levels of inhibition against the examined fungi, with Lactiplantibacillus plantarum S4.2 and Lentilactobacillusparabuchneri S2.9 exhibiting the highest suppression against the indicator strains Fusarium graminearum MUCL43764, Aspergillus fumigatus, A. flavus MUCL11945, A. brasiliensis DSM1988, and Penicillium roqueforti DSM1079. Furthermore, the antifungal activity was shown to be attributed mainly to the activity of acids produced by LAB. The antibacillus activity was evaluated by the spot-on-the-lawn method revealing a high inhibition potential of the majority of LAB isolated from sourdough against Bacillus cereus DSM31, B. licheniformis DSM13, B. subtilis LMG7135, and B. subtilis S15.20. Furthermore, evaluating the presence of the glutamate decarboxylase gen in LAB isolates by means of PCR showed a strain dependency of a potential GABA production. Finally, due to improved functional activities, LAB isolated from sourdoughs exhibit promising characteristics for the application as natural preservatives in wheat-based bakery products.
Project description:Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri, four S. sonnei) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.
Project description:The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.
Project description:BackgroundProbiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast.ResultsTwelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose.ConclusionThe explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Project description:The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.