Project description:Exosomes are cell-derived nanovesicles involved in regulating intercellular communications. In contrast to conventional nanomedicines, exosomes are characterized by unique advantages for therapeutic development. Despite their major successes in drug delivery, the full potential of exosomes for immunotherapy remains untapped. Herein we designed genetically engineered exosomes featured with surfaced-displayed antibody targeting groups and immunomodulatory proteins. Through genetic fusions with exosomal membrane proteins, Expi293F cell-derived exosomes were armed with monoclonal antibodies specific for human T-cell CD3 and epidermal growth factor receptor (EGFR) as well as immune checkpoint modulators, programmed death 1 (PD-1) and OX40 ligand (OX40L). The resulting genetically engineered multifunctional immune-modulating exosomes (GEMINI-Exos) can not only redirect and activate T cells toward killing EGFR-positive triple negative breast cancer (TNBC) cells but also elicit robust anti-cancer immunity, giving rise to highly potent inhibition against established TNBC tumors in mice. GEMINI-Exos represent candidate agents for immunotherapy and may offer a general strategy for generating exosome-based immunotherapeutics with desired functions and properties.
Project description:The bottleneck in drug discovery for central nervous system diseases is the absence of effective systemic drug delivery technology for delivering therapeutic drugs into the brain. Despite the advances in the technology used in drug discovery, such as Adeno-Associated Virus (AAV) vectors, the development of drugs for central nervous system diseases remains challenging. In this manuscript, we describe, for the first time, the development of a workflow to generate a novel brain-targeted drug delivery system that involves the generation of genetically engineered exosomes by first selecting various functional AAV capsid-specific peptides (collectively called CAPs) known to be involved in brain-targeted high-expression gene delivery, and then expressing the CAPs in frame with lysosome-associated membrane glycoprotein (Lamp2b) followed by expressing CAP-Lamp2b fusion protein on the surface of mesenchymal stem cell-derived exosomes, thus generating CAP-exosomes. Intravenous injection of green fluorescent protein (GFP) gene-loaded CAP-exosomes in mice transferred the GFP gene throughout the CNS as measured by monitoring brain sections for GFP expression with confocal microscopy. GFP gene transfer efficiency was at least 20-fold greater than that of the control Lamp2b-exosomes, and GFP gene transduction to mouse liver was low.
Project description:Cuproptosis, caused by an intracellular overload of copper (Cu) ions and overexpression of ferredoxin 1 (FDX1), is identified for its regulatory role in the skin wound healing process. This study verifies the presence of cuproptosis in skin wound beds and reactive oxygen species-induced cells model. To address the two pathways leading to cell cuproptosis, a nanodrug-engineered exosomes is proposed. A Cu-chelator (Clioquinol, CQ) polydopamine (PDA)-modified stem cell exosome loaded with siRNA-FDX1, named EXOsiFDX1-PDA@CQ, is designed to efficiently inhibit the two cuproptosis pathways. The functionalized exosomes are loaded into an injectable hydrogel and applied to treat diabetic wounds in mice and acute skin wounds in pigs. The local and controlled release of EXOsiFDX1-PDA@CQ ensures the retention of the therapeutic agent at wound beds, effectively promoting wound healing. The strategy of engineered exosomes with functional nanoparticles (NPs) proposed in this study offers an efficient and scalable new approach for regulating cuproptosis.
Project description:Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately 'blind' neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric ?3?4 and ?4?2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.
Project description:Rapid advances in cellular engineering1,2 have positioned synthetic biology to address therapeutic3,4 and industrial5 problems, but a substantial obstacle is the myriad of unanticipated cellular responses in heterogeneous real-world environments such as the gut6,7, solid tumours8,9, bioreactors10 or soil11. Complex interactions between the environment and cells often arise through non-uniform nutrient availability, which generates bidirectional coupling as cells both adjust to and modify their local environment through phenotypic differentiation12,13. Although synthetic spatial gene expression patterns14-17 have been explored under homogeneous conditions, the mutual interaction of gene circuits, growth phenotype and the environment remains a challenge. Here, we design gene circuits that sense and control phenotypic structure in microcolonies containing both growing and dormant bacteria. We implement structure modulation by coupling different downstream modules to a tunable sensor that leverages Escherichia coli's stress response and is activated on growth arrest. One is an actuator module that slows growth and thereby alters nutrient gradients. Environmental feedback in this circuit generates robust cycling between growth and dormancy in the interior of the colony, as predicted by a spatiotemporal computational model. We also use the sensor to drive an inducible gating module for selective gene expression in non-dividing cells, which allows us to radically alter population structure by eliminating the dormant phenotype with a 'stress-gated lysis circuit'. Our results establish a strategy to leverage and control microbial colony structure for synthetic biology applications in complex environments.
Project description:Biofilm-related diseases are a group of diseases that tolerate antimicrobial chemotherapies and therefore are refractory to treatment. Periodontitis, a non-device chronic biofilm disease induced by dental plaque, can serve as an excellent in vivo model to study the important effects of host factors on the biofilm microenvironment. Macrophage activity is one of the key factors that modulate the progression of inflammation-driven destruction in periodontitis; therefore it is an important host immunomodulatory factor. In this study, the reduction of microRNA-126 (miR-126) with the recruitment of macrophages in periodontitis was confirmed in clinical samples, and a strategy for targeted delivery of miR-126 to macrophages was explored. Exosomes overexpressing the C-X-C motif chemokine receptor 4 (CXCR4) loaded with miR-126 (CXCR4-miR126-Exo) was successfully constructed, which reduced off-target delivery to macrophages and regulated macrophages toward the anti-inflammatory phenotype. In vivo local injection of CXCR4-miR126-Exo into sites of periodontitis in rats effectively reduced bone resorption and osteoclastogenesis and inhibited the progression of periodontitis. These results provide new insights for designing novel immunomodulatory factor targeted delivery systems to treat periodontitis and other biofilm-related diseases.
Project description:Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system.
Project description:ObjectivesTo develop a mouse model for multispectral fluorescence imaging of the pancreas and pancreatic microenvironment.MethodsCre/loxP technology was used to develop this model. We crossed mT/mG indicator mice, engineered to constitutively express a conditional tdTomato transgene that converts to green fluorescent protein (GFP) expression after exposure to Cre recombinase, with Pdx1-Cre transgenic mice. To characterize this model for studies of pancreas biology, we performed bright light and fluorescence imaging of body cavities and intact organs and confocal microscopy of pancreata from offspring of Pdx1-Cre and mT/mG crosses.ResultsPdx1-Cre-mT/mG mice demonstrated bright GFP expression within the pancreas and duodenum and intense tdTomato expression in all other organs. Green fluorescent protein expression was mosaic in Pdx1-Cre-mT/mG pancreata, with most showing extensive conversion from tdTomato to GFP expression within the epithelial-derived elements of the pancreatic parenchyma. Because both GFP and tdTomato are membrane targeted, individual cell borders were clearly outlined in confocal images of mT/mG pancreata.ConclusionsThis mouse model enables multispectral fluorescence imaging of individual cells and cell processes at the microscopic level of the pancreatic microenvironment; it should prove valuable for a variety of fluorescence imaging studies, ranging from pancreatic development to pancreatic cancer biology.
Project description:Cementum, a thin layer of mineralized tissue covering tooth root surface, is recognized as the golden standard in periodontal regeneration. However, current efforts mainly focus on alveolar bone regeneration rather than cementum regeneration, and rarely take Porphyromonas gingivalis (Pg), the keystone pathogen responsible for periodontal tissue destruction, into consideration. Though M2 macrophage-derived exosomes (M2-EXO) show promise in tissue regeneration, the exosome-producing M2 macrophages are induced by exogenous cytokines with transitory and unstable effects, restricting the regeneration potential of M2-EXO. Here, exosomes derived from genetically engineered M2-like macrophages are constructed by silencing of casein kinase 2 interacting protein-1 (Ckip-1), a versatile player involved in various biological processes. Ckip-1 silencing is proved to be an effective gene regulation strategy to obtain permanent M2-like macrophages with mineralization-promoting effect. Further, exosomes derived from Ckip-1-silenced macrophages (sh-Ckip-1-EXO) rescue Pg-suppressed cementoblast mineralization and cementogenesis. Mechanismly, sh-Ckip-1-EXO delivers Let-7f-5p targeting and silencing Ckip-1, a negative regulator also for cementum formation and cementoblast mineralization. More deeply, downregulation of Ckip-1 in cementoblasts by exosomal Let-7f-5p activates PGC-1α-dependent mitochondrial biogenesis. In all, this study provides a new strategy of genetically engineered M2-like macrophage-derived exosomes for cementum regeneration under Pg-dominated inflammation.
Project description:Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development.