Project description:Mindfulness interventions have been linked to improved sport performance and executive functions; however, few studies have explored the effects of mindfulness on sport performance and executive functions simultaneously. This study sought to examine whether a mindfulness training program would affect both the endurance performance and executive functions of athletes. In addition, event-related potentials (ERPs) associated with the Stroop task were assessed to investigate the potential electrophysiological activation associated with the mindfulness training. Applying a quasiexperimental design, forty-six university athletes were recruited and assigned into a five-week mindfulness training program or a waiting list control group. For each participant, the mindfulness level, endurance performance assessed by a graded exercise test, executive functions assessed via Stroop task, and N2 component of ERPs were measured prior to and following the 5-week intervention. After adjusting for the preintervention scores as a covariate, it was found that the postintervention mindfulness level, exhaustion time, and Stroop task accuracy scores, regardless of task condition, of the mindfulness group were higher than those of the control group. The mindfulness group also exhibited a smaller N2 amplitude than the control group. These results suggest that the five-week mindfulness program can enhance the mindfulness level, endurance performance, and multiple cognitive functions, including executive functions, of university athletes. Mindfulness training may also reduce conflict monitoring in neural processes.
Project description:Inspiratory muscle training (IMT) is a strategy that has been used to improve performance in different sports modalities. This study investigated the effects of an IMT program on respiratory muscle strength and resistance as well as aerobic physical performance (PP) of handball athletes. Nineteen 20 ± 3 year-old male athletes were allocated into an experimental (EG, n = 10) or a placebo group (PG, n = 9). Their respiratory muscle strength was evaluated by measuring the maximum inspiratory and expiratory pressures (MIP and MEP), muscular respiratory resistance by maximum voluntary ventilation (MVV) and aerobic PP by the cardiopulmonary exercise test. The study was designed to evaluate the effects of a 12-week IMT program with five sessions a week. A significant difference was observed in the pre and post IMT values of the MIP (170 ± 34 to 262 ± 33 cmH2O) and MEP (177 ± 36 to 218 ± 37 cmH2O) in the EG, and MIP (173 ± 45 to 213 ± 21 cmH2O) in the PG, with a large effect size for the MIP, when the groups were compared. MVV showed a significant increase (162 ± 24 to 173 ± 30 L) in the EG, with a small effect size. There was a significant difference in maximum oxygen uptake (54 ± 8 to 60 ± 7 ml/kg/min) in aerobic PP. Oxygen uptake at the respiratory compensation point (RCP) (46 ± 6 to 50 ± 5 ml/kg/min), with a moderate effect size for both variables, was observed in the EG after IMT. We concluded that IMT provided a significant increase in respiratory muscle strength and resistance, contributing to increased aerobic PP in the EG, which suggests that IMT could be incorporated in handball players' training.
Project description:Background: Jumping ability is one of the necessary qualities for athletes. Previous studies have shown that plyometric training and complex training including plyometrics can improve athletes' jumping ability. With the emergence of various types of complex training, there is uncertainty about which training method has the best effect. This study conducted a meta-analysis of randomized controlled trials of plyometric-related training on athletes' jumping ability, to provide some reference for coaches to design training plans. Methods: We systematically searched 3 databases (PubMed, Web of Science, and Scopus) up to July 2023 to identify randomized controlled trials investigating plyometrics related training in athletes. The two researchers conducted literature screening, extraction and quality assessment independently. We performed a network meta-analysis using Stata 16. Results: We analyzed 83 studies and found that complex training, which includes high-intensity intervals and plyometric exercises, was the most effective method for improving squat jumps (SURCA = 96%). In the case of countermovement jumps a combination of electrostimulation and plyometric training yielded the best results (SURCA = 97.6%). Weightlifting training proved to be the most effective for the standing long jump (SURCA = 81.4%), while strength training was found to be the most effective for the five bounces test (SURCA = 87.3%). Conclusion: Our current study shows that complex training performs more efficient overall in plyometric-related training. However, there are different individual differences in the effects of different training on different indicators (e.g., CMJ, SJ, SLJ, 5BT) of athletes. Therefore, in order to ensure that the most appropriate training is selected, it is crucial to accurately assess the physical condition of each athlete before implementation. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/, Registration and protocol CRD42023456402.
Project description:BackgroundDue to the influence of growth, adolescent team-sport athletes have the need to improve their change of direction (COD) performance and reduce the risk of anterior cruciate ligament (ACL) injuries during COD. However, the optimal intervention for improving COD performance has not yet been determined.ObjectiveTo quantitatively assess the effects of diverse training interventions on COD performance.MethodsA systematic search of five databases was conducted, adhering to the PRISMA guidelines. Randomized controlled trials that examined 10 distinct training interventions for COD performance in adolescent team-sport athletes were emphasized. Effect sizes were represented as standardized mean differences (SMD) with 95% credible intervals (CI). The Cochrane study risk assessment tool evaluated the risk of bias in the selected studies.ResultsOf the 36 studies analyzed, involving 1,125 participants. Eccentric overload training (EOT) (SMD = -2.06, 95% CI [-2.83 to -1.29]) emerged as the most effective training method for overall COD performance. Subgroup analysis shows that combined training (COM) (SMD = -2.14, 95% CI [-3.54 to -0.74]) was the best training intervention for COD performance with angles less than 90°. EOT (SMD = -2.84, 95% CI [-4.62 to -1.07]) also was two best training intervention for COD performance with angles greater than 90°.ConclusionsThe choice of training intervention should be determined based on the COD angle. When the COD angle exceeds 90° or is not restricted, EOT is the optimal intervention; however, this is not the case for angles below 90°. Further high-quality studies are needed in the future to validate these findings. Systematic review registration: PROSPERO CRD42024501819.
Project description:BackgroundThe literature has proven that plyometric training (PT) improves various physical performance outcomes in sports. Even though PT is one of the most often employed strength training methods, a thorough analysis of PT and how it affects technical skill performance in sports needs to be improved.MethodsThis study aimed to compile and synthesize the existing studies on the effects of PT on healthy athletes' technical skill performance. A comprehensive search of SCOPUS, PubMed, Web of Science Core Collection, and SPORTDiscus databases was performed on 3rd May 2023. PICOS was employed to establish the inclusion criteria: 1) healthy athletes; 2) a PT program; 3) compared a plyometric intervention to an active control group; 4) tested at least one measure of athletes' technical skill performance; and 5) randomized control designs. The methodological quality of each individual study was evaluated using the PEDro scale. The random-effects model was used to compute the meta-analyses. Subgroup analyses were performed (participant age, gender, PT length, session duration, frequency, and number of sessions). Certainty or confidence in the body of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE).ResultsThirty-two moderate-high-quality studies involving 1078 athletes aged 10-40 years met the inclusion criteria. The PT intervention lasted for 4 to 16 weeks, with one to three exercise sessions per week. Small-to-moderate effect sizes were found for performance of throwing velocity (i.e., handball, baseball, water polo) (ES = 0.78; p < 0.001), kicking velocity and distance (i.e., soccer) (ES = 0.37-0.44; all p < 0.005), and speed dribbling (i.e., handball, basketball, soccer) (ES = 0.85; p = 0.014), while no significant effects on stride rate (i.e., running) were noted (ES = 0.32; p = 0.137). Sub-analyses of moderator factors included 16 data sets. Only training length significantly modulated PT effects on throwing velocity (> 7 weeks, ES = 1.05; ≤ 7 weeks, ES = 0.29; p = 0.011). The level of certainty of the evidence for the meta-analyzed outcomes ranged from low to moderate.ConclusionOur findings have shown that PT can be effective in enhancing technical skills measures in youth and adult athletes. Sub-group analyses suggest that PT longer (> 7 weeks) lengths appear to be more effective for improving throwing velocity. However, to fully determine the effectiveness of PT in improving sport-specific technical skill outcomes and ultimately enhancing competition performance, further high-quality research covering a wider range of sports is required.
Project description:BackgroundShort-sprint (≤ 20 m) performance is an important quality for success in the football codes. Therefore, developing an evidence base for understanding training methods to enhance short-sprint performance is key for practitioners. However, current systematic reviews are limited by (1) a lack of focus on football code athletes, (2) a lack of consideration of all training modalities and (3) a failure to account for the normal training practices undertaken by intervention groups within their analysis. Therefore, this review aimed to (1) conduct a systematic review of the scientific literature evaluating training interventions upon short-sprint performance within football code athletes, (2) undertake a meta-analysis to assess the magnitude of change of sport-sprint performance following training interventions and (3) identify how moderator variables affect the training response.MethodsA systematic search of electronic databases was conducted. A random-effects meta-analysis was performed to establish standardised mean difference with 95% confidence intervals. This identified the magnitude and direction of the individual training effects of intervention subgroups (primary, secondary, combined-specific, tertiary and combined training methods) on short-sprint performance while considering moderator variables (i.e., football code, sex, age, playing standard, phase of season).Results121 studies met the inclusion criteria, totalling 3419 athletes. Significant improvements (small-large) were found between pre- and post-training in short-sprint performance for the combined, secondary, tertiary and combined-specific training methods. No significant effect was found for primary or sport only training. No individual mode was found to be the most effective. Between-subgroup analysis identified that football code, age, playing standard and phase of season all moderated the overall magnitude of training effects.ConclusionsThis review provides the largest systematic review and meta-analysis of short-sprint performance development methods and the only one to assess football code athletes exclusively. Practitioners can apply combined, secondary and tertiary training methods to improve short-sprint performance within football code athletes. The application of sport only and primary methods does not appear to improve short-sprint performance. Regardless of the population characteristics, short-sprint performance can be enhanced by increasing either or both the magnitude and the orientation of force an athlete can generate in the sprinting action.Trial registrationOSF registration https://osf.io/kshqn/ .
Project description:ContextPlyometric training has been shown to be beneficial in adolescent overhead athletes. However, existing research on the effects of plyometrics on sport performance has been limited.ObjectiveTo systematically review the current literature to investigate whether plyometric training intervention improves upper- and lower-body sport performance.Data sourcesTwo electronic databases (MEDLINE and Web of Science) were searched using specific Medical Subject Headings (MeSH) terms up to February 2019, and hand-searching was performed by looking to relevant studies that were cited in other studies.Study selectionA total of 932 items were identified and were further assessed for the eligibility in the systematic review. For a study to be eligible, each of the following inclusion criteria had to be met: (1) participants were aged 13 to 18 years and selected from a sports or athletic population and the study (2) involved the evaluation of a plyometric training intervention with an aim to improve sports performance; (3) must have included a control intervention and/or control group; (4) included a quantitative objective measure of sport performance variables concerning throwing, jumping, running, and sprinting; and (5) was published in English.Study designSystematic review.Level of evidenceLevel 3.Data extractionA first screening was conducted based on title and abstract of the articles. In the second screening, the full text of the remaining articles was evaluated for the fulfillment of the inclusion criteria.ResultsA total of 14 studies were included in this review. The methodological quality of the included studies ranged from low to moderate. There is moderate evidence that plyometric training intervention improves throwing and jumping performances. There is also preliminary evidence that plyometric training intervention improves sprint performance.ConclusionThe current evidence suggests that sport performance consisting of throwing capacity, jumping ability, and sprint performance significantly improved due to plyometric training interventions in adolescent overhead athletes.
Project description:BackgroundWithin the football codes, medium-distance (i.e., > 20 m and ≤ 40 m) and long-distance (i.e., > 40 m) sprint performance and maximum velocity sprinting are important capacities for success. Despite this, no research has identified the most effective training methods for enhancing medium- to long-distance sprint outcomes.ObjectivesThis systematic review with meta-analysis aimed to (1) analyse the ability of different methods to enhance medium- to long-distance sprint performance outcomes (0-30 m, 0 to > 30 m, and the maximum sprinting velocity phase [Vmax]) within football code athletes and (2) identify how moderator variables (i.e., football code, sex, age, playing standard, phase of season) affected the training response.MethodsWe conducted a systematic search of electronic databases and performed a random-effects meta-analysis (within-group changes and pairwise between-group differences) to establish standardised mean differences (SMDs) with 95% confidence intervals and 95% prediction intervals. This identified the magnitude and direction of the individual training effects of intervention subgroups (sport only; primary, secondary, tertiary, and combined training methods) on medium- to long-distance sprint performance while considering moderator variables.ResultsIn total, 60 studies met the inclusion criteria (26 with a sport-only control group), totalling 111 intervention groups and 1500 athletes. The within-group changes design reported significant performance improvements (small-moderate) between pre- and post-training for the combined, secondary (0-30 and 0 to > 30 m), and tertiary training methods (0-30 m). A significant moderate improvement was found in the Vmax phase performance only for tertiary training methods, with no significant effect found for sport only or primary training methods. The pairwise between-group differences design (experimental vs. control) reported favourable performance improvements (large SMD) for the combined (0 to > 30 m), primary (Vmax phase), secondary (0-30 m), and tertiary methods (all outcomes) when compared with the sport-only control groups. Subgroup analysis showed that the significant differences between the meta-analysis designs consistently demonstrated a larger effect in the pairwise between-group differences than the within-group change. No individual training mode was found to be the most effective. Subgroup analysis identified that football code, age, and phase of season moderated the overall magnitude of training effects.ConclusionsThis review provides the first systematic review and meta-analysis of all sprint performance development methods exclusively in football code athletes. Secondary, tertiary, and combined training methods appeared to improve medium-long sprint performance of football code athletes. Tertiary training methods should be implemented to enhance Vmax phase performance. Nether sport-only nor primary training methods appeared to enhance medium to long sprint performance. Performance changes may be attributed to either adaptations specific to the acceleration or Vmax phases, or both, but not exclusively Vmax. Regardless of the population characteristics, sprint performance can be enhanced by increasing either the magnitude or the orientation of force an athlete can generate in the sprinting action, or both.Trial registrationOSF registration https://osf.io/kshqn/ .
Project description:Mindfulness can benefit athletes' mindset and performance. These benefits may be enhanced by sport-specific mindfulness interventions. Accordingly, our objectives were 2-fold: first, to develop a rowing-specific mindfulness intervention, and second, to investigate its effects on mindfulness, flow, reinvestment, and rowing performance. Rowers were randomly assigned to either a 6-week rowing-specific mindfulness intervention (n = 23), which included generic and rowing-specific practices, or a control group (n = 21). Rowers completed pre-test and post-test measures of performance, mindfulness, flow, and rowing-specific reinvestment. Lastly, rowers completed an evaluation form following the intervention. The results demonstrated that the intervention group increased flow, mindfulness, and improved performance, additionally conscious motor processing decreased from pre-test to post-test. However, the intervention did not preferentially change mindfulness or reinvestment compared to control. Participants provided favorable feedback and evaluated the intervention positively. Our 6-week rowing-specific mindfulness intervention promoted flow, encouraged mindfulness, and aided performance. Thus, we provide preliminary explorative evidence that a sport-specific mindfulness intervention can benefit athletes. We recommend that future research, with large sample sizes and improved home practice, should examine mediators and moderators of the mindfulness-performance relationship.