Project description:We aimed to investigate the characteristic presentation of Miller Fisher syndrome (MFS) in pediatrics and compare it with that in adults. We performed a retrospective review of medical records, laboratory findings, and disease course of pediatric MFS. The data were compared with those of adult MFS, and literature review was done. Unpaired and paired comparisons between groups were made using Wilcoxon rank-sum and signed-rank tests, respectively. Median age for pediatric MFS was 9.8 ± 6.5 years. There were 5 (45.5%) male and 6 (54.5%) female patients. All patients had preceding infection. Two patients (22.2%) had tested positive for anti-GQ1b antibody. Ten patients (90.1%) were treated with intravenous immunoglobulin, and 2 (18.2%) also received intravenous methylprednisolone. Within one month, 8 (72.7%) patients showed recovery, and all 11 (100%) recovered fully within 3 months. Further, the pediatric group had higher frequency of unilateral involvement of ophthalmoplegia, ataxia, and autonomic symptoms but lower antiganglioside antibody positivity and manifestations of areflexia than the adult group. Neuro-ophthalmic manifestations and disease course of pediatric MFS were similar to those of adult MFS as stated in the literature. However, the presence of autonomic symptoms was higher and anti-GQ1b antibody positivity was lower in pediatric MFS than in adult MFS.
Project description:The celebrated Miller experiments reported on the spontaneous formation of amino acids from a mixture of simple molecules reacting under an electric discharge, giving birth to the research field of prebiotic chemistry. However, the chemical reactions involved in those experiments have never been studied at the atomic level. Here we report on, to our knowledge, the first ab initio computer simulations of Miller-like experiments in the condensed phase. Our study, based on the recent method of treatment of aqueous systems under electric fields and on metadynamics analysis of chemical reactions, shows that glycine spontaneously forms from mixtures of simple molecules once an electric field is switched on and identifies formic acid and formamide as key intermediate products of the early steps of the Miller reactions, and the crucible of formation of complex biological molecules.
Project description:Citrobacter freundii is a Gram-negative, opportunistic pathogen that can be fatal to newborns or immunocompromised patients. Bacteriophages against this bacterium can be useful for therapeutic purposes. Here, we describe the complete genome and the key features of the pseudo T-even C. freundii bacteriophage Miller.
Project description:Previous studies relating to prolonged and fractionated distillation procedures highlighted essential oils' (EOs) chemical composition to be significantly dependent on the extraction duration and harvesting time. As a continuation, a hydrodistillation procedure was applied to ripe fruit material of fennel, Foeniculum vulgare Miller (Apiaceae), collected from three localities in Montenegro (Podgorica, Nikšić, and Kotor) to furnish a total of 12 EOs. Liquid and vapor phases of the samples were analyzed by Gas Chromatography/Mass Spectrometry and Headspace-Gas Chromatography/Mass Spectrometry techniques, and 18 compounds have been identified. Although both quantitative and qualitative differences between the samples were notable, the phenylpropanoids anethole (ANE) and estragole and the monoterpenoids α-terpineol (TER) and fenchone (FEN) could be singled out as the most abundant constituents. The EOs from Podgorica belong to the most common ANE-rich chemotype, while the predominance of the monoterpenoid fraction is characteristic of the samples from Nikšić and Kotor. The latter is particularly rich in TER (up to 56.5%), with significant amounts of FEN and ANE. This chemical profile could represent a new chemotype of fennel EO. Vapor phases contained mainly monoterpenoids, with increased amounts of FEN and TER, while the number of phenylpropanoids was significantly decreased.
Project description:IntroductionMiller Fisher syndrome (MFS) is a rare variant of Guillain-Barre syndrome characterized by ataxia, areflexia, and ophthalmoplegia. We present a case of MFS following Pfizer COVID-19 vaccine.Case presentationA previously healthy 24-year-old female presented with binocular horizontal diplopia 18 days after receiving the first dose of Pfizer COVID-19 vaccine (Comirnaty®). Anti-ganglioside testing revealed positive anti-GQ1b antibodies. Intravenous immunoglobulins were administered, in a dose of 2 g per kg of body weight over 5 days. On a follow-up exam 3 weeks after the treatment, clinical improvement was noted with normal bulbomotor examination.ConclusionPatients with acute ophthalmoplegia occurring after COVID-19 vaccination should be screened for the presence of anti-GQ1b antibody. If the antibody is present, intravenous immunoglobulin should be administered as it may hasten clinical improvement.
Project description:We have designed a set of experiments to test the role of borosilicate reactor on the yielding of the Miller-Urey type of experiment. Two experiments were performed in borosilicate flasks, two in a Teflon flask and the third couple in a Teflon flask with pieces of borosilicate submerged in the water. The experiments were performed in CH4, N2, and NH3 atmosphere either buffered at pH 8.7 with NH4Cl or unbuffered solutions at pH ca. 11, at room temperature. The Gas Chromatography-Mass Spectroscopy results show important differences in the yields, the number of products, and molecular weight. In particular, a dipeptide, multi-carbon dicarboxylic acids, PAHs, and a complete panel of biological nucleobases form more efficiently or exclusively in the borosilicate vessel. Our results offer a better explanation of the famous Miller's experiment showing the efficiency of borosilicate in a triphasic system including water and the reduced Miller-Urey atmosphere.
Project description:We designed and conducted a series of primordial-soup Miller-Urey style experiments with deuterated gases and reagents to compare the spark-discharge products of a "deuterated world" with the standard reaction in the "hydrogenated world". While the deuteration of the system has little effect on the distribution of amino acid products, significant differences are seen in other regions of the product-space. Not only do we observe about 120 new species, we also see significant differences in their distribution if the two hydrogen isotope worlds are compared. Several isotopologue matches can be identified in both, but a large proportion of products have no equivalent in the corresponding isotope world with ca. 43 new species in the D world and ca. 39 new species in the H world. This shows that isotopic exchange (the addition of only one neutron) may lead to significant additional complexity in chemical space under otherwise identical reaction conditions.
Project description:Miller-Dieker syndrome (MDS) is a rare genetic syndrome associated with lissencephaly, developmental delay, and high mortality. We describe a patient who was diagnosed postnatally with both MDS and congenital lobar emphysema. We believe that this is the first reported case of the two conditions presenting in the same patient.