Project description:Non-expert users can now program robots using various end-user robot programming methods, which have widened the use of robots and lowered barriers preventing robot use by laypeople. Kinesthetic teaching is a common form of end-user robot programming, allowing users to forgo writing code by physically guiding the robot to demonstrate behaviors. Although it can be more accessible than writing code, kinesthetic teaching is difficult in practice because of users' unfamiliarity with kinematics or limitations of robots and programming interfaces. Developing good kinesthetic demonstrations requires physical and cognitive skills, such as the ability to plan effective grasps for different task objects and constraints, to overcome programming difficulties. How to help users learn these skills remains a largely unexplored question, with users conventionally learning through self-guided practice. Our study compares how self-guided practice compares with curriculum-based training in building users' programming proficiency. While we found no significant differences between study participants who learned through practice compared to participants who learned through our curriculum, our study reveals insights into factors contributing to end-user robot programmers' confidence and success during programming and how learning interventions may contribute to such factors. Our work paves the way for further research on how to best structure training interventions for end-user robot programmers.
Project description:BackgroundPatients with head and neck cancer (HNC) carry a clinically significant symptom burden, have alterations in function (eg, impaired ability to chew, swallow, and talk), and decrease in quality of life. Furthermore, treatment impacts social activities and interactions as patients report reduced sexuality and shoulder the highest rates of depression across cancer types. Patients suffer undue anxiety because they find the treatment incomprehensible, which is partially a function of limited, understandable information. Patients' perceptions of having obtained adequate information prior to and during treatment are predictive of positive outcomes. Providing patient-centered decision support and utilizing visual images may increase understanding of treatment options and associated risks to improve satisfaction with their decision and consultation, while reducing decisional conflict.ObjectiveThis study aims to gather requirements from survivors of HNC on the utility of key visual components to be used in the design of an electronic decision aid (eDA) to assist with decision-making on treatment options.MethodsInformed by a scoping review on eDAs for patients with HNC, screens and visualizations for an eDA were created and then presented to 12 survivors of HNC for feedback on their utility, features, and further requirements. The semistructured interviews were video-recorded and thematically analyzed to inform co-design recommendations.ResultsA total of 9 themes were organized into 2 categories. The first category, eDAs and decision support, included 3 themes: familiarity with DAs, support of concept, and versatility of the prototype. The second category, evaluation of mock-up, contained 6 themes: reaction to the screens and visualizations, favorite features, complexity, preference for customizability, presentation device, and suggestions for improvement.ConclusionsAll participants felt an eDA, used in the presence of their oncologist, would support a more thorough and transparent explanation of treatment or augment the quality of education received. Participants liked the simple design of the mock-ups they were shown but, ultimately, desired customizability to adapt the eDA to their individual information needs. This research highlights the value of user-centered design, rooted in acceptability and utility, in medical health informatics, recognizing cancer survivors as the ultimate knowledge holders. This research highlights the value of incorporating visuals into technology-based innovations to engage all patients in treatment decisions.
Project description:There is tremendous enthusiasm surrounding the potential for machine learning to improve medical prognosis and diagnosis. However, there are risks to translating a machine learning model into clinical care and clinical end users are often unaware of the potential harm to patients. This perspective presents the "Model Facts" label, a systematic effort to ensure that front-line clinicians actually know how, when, how not, and when not to incorporate model output into clinical decisions. The "Model Facts" label was designed for clinicians who make decisions supported by a machine learning model and its purpose is to collate relevant, actionable information in 1-page. Practitioners and regulators must work together to standardize presentation of machine learning model information to clinical end users in order to prevent harm to patients. Efforts to integrate a model into clinical practice should be accompanied by an effort to clearly communicate information about a machine learning model with a "Model Facts" label.
Project description:Creating software tools that address the needs of a wide range of decision-makers requires the inclusion of differing perspectives throughout the development process. Software tools for biodiversity conservation often fall short in this regard, partly because broad decision-maker needs may exceed the toolkits of single research groups or even institutions. We show that participatory, collaborative codesign enhances the utility of software tools for better decision-making in biodiversity conservation planning, as demonstrated by our experiences developing a set of integrated tools in Colombia. Specifically, we undertook an interdisciplinary, multi-institutional collaboration of ecological modelers, software engineers, and a diverse profile of potential end users, including decision-makers, conservation practitioners, and biodiversity experts. We leveraged and modified common paradigms of software production, including codesign and agile development, to facilitate collaboration through all stages (including conceptualization, development, testing, and feedback) to ensure the accessibility and applicability of the new tools to inform decision-making for biodiversity conservation planning.
Project description:BackgroundChronic kidney disease (CKD), a major public health problem with differing disease etiologies, leads to complications, comorbidities, polypharmacy, and mortality. Monitoring disease progression and personalized treatment efforts are crucial for long-term patient outcomes. Physicians need to integrate different data levels, e.g., clinical parameters, biomarkers, and drug information, with medical knowledge. Clinical decision support systems (CDSS) can tackle these issues and improve patient management. Knowledge about the awareness and implementation of CDSS in Germany within the field of nephrology is scarce.PurposeNephrologists' attitude towards any CDSS and potential CDSS features of interest, like adverse event prediction algorithms, is important for a successful implementation. This survey investigates nephrologists' experiences with and expectations towards a useful CDSS for daily medical routine in the outpatient setting.MethodsThe 38-item questionnaire survey was conducted either by telephone or as a do-it-yourself online interview amongst nephrologists across all of Germany. Answers were collected and analysed using the Electronic Data Capture System REDCap, as well as Stata SE 15.1, and Excel. The survey consisted of four modules: experiences with CDSS (M1), expectations towards a helpful CDSS (M2), evaluation of adverse event prediction algorithms (M3), and ethical aspects of CDSS (M4). Descriptive statistical analyses of all questions were conducted.ResultsThe study population comprised 54 physicians, with a response rate of about 80-100% per question. Most participants were aged between 51-60 years (45.1%), 64% were male, and most participants had been working in nephrology out-patient clinics for a median of 10.5 years. Overall, CDSS use was poor (81.2%), often due to lack of knowledge about existing CDSS. Most participants (79%) believed CDSS to be helpful in the management of CKD patients with a high willingness to try out a CDSS. Of all adverse event prediction algorithms, prediction of CKD progression (97.8%) and in-silico simulations of disease progression when changing, e. g., lifestyle or medication (97.7%) were rated most important. The spectrum of answers on ethical aspects of CDSS was diverse.ConclusionThis survey provides insights into experience with and expectations of out-patient nephrologists on CDSS. Despite the current lack of knowledge on CDSS, the willingness to integrate CDSS into daily patient care, and the need for adverse event prediction algorithms was high.
Project description:Modification of Gene Expression of Skeletal Muscle in Response to postmenopause with or without Hormone Replacement Therapy. Even though menopause is often accompanied with first signs of age-associated changes in muscle structure and function, the effects of hormone replacement therapy (HRT) or menopause-related decline in estrogen production in the muscles of postmenopausal women is not well understood. We have used a randomized double-blinded study design together with an explorative microarray experiment to characterize possible effects of continuous, combined HRT and estrogen deprivation on the skeletal muscle of fifteen early postmenopausal women from which 10 used HRT and 5 used placebo for 12-months in a douple-blinded design. Keywords: time course analysis from HRT users and non-users comparison of gene expression in skeletal muscle of healthy postmenopausel women using HRT (n=10) vs not-using HRT (n=5)
Project description:Modification of Gene Expression of Skeletal Muscle in Response to postmenopause with or without Hormone Replacement Therapy. Even though menopause is often accompanied with first signs of age-associated changes in muscle structure and function, the effects of hormone replacement therapy (HRT) or menopause-related decline in estrogen production in the muscles of postmenopausal women is not well understood. We have used a randomized double-blinded study design together with an explorative microarray experiment to characterize possible effects of continuous, combined HRT and estrogen deprivation on the skeletal muscle of fifteen early postmenopausal women from which 10 used HRT and 5 used placebo for 12-months in a douple-blinded design. Keywords: time course analysis from HRT users and non-users
Project description:N6-methyladenosine (m$^{6}$A) is a widely-studied methylation to messenger RNAs, which has been linked to diverse cellular processes and human diseases. Numerous databases that collate m$^{6}$A profiles of distinct cell types have been created to facilitate quick and easy mining of m$^{6}$A signatures associated with cell-specific phenotypes. However, these databases contain inherent complexities that have not been explicitly reported, which may lead to inaccurate identification and interpretation of m$^{6}$A-associated biology by end-users who are unaware of them. Here, we review various m$^{6}$A-related databases, and highlight several critical matters. In particular, differences in peak-calling pipelines across databases drive substantial variability in both peak number and coordinates with only moderate reproducibility, and the inclusion of peak calls from early m$^{6}$A sequencing protocols may lead to the reporting of false positives or negatives. The awareness of these matters will help end-users avoid the inclusion of potentially unreliable data in their studies and better utilize m$^{6}$A databases to derive biologically meaningful results.
Project description:The proposed research aims to investigate the problem of age-friendly robot designing from the perspective of the potential end-users. The initial objectives addressed three main issues: how the elderly envision robots and their knowledge on technological development; age-friendly robot design; the elderly's involvement in the robot design process. The empirical material analyzed are the results of in-depth interviews with people aged 70+. A sociological approach is proposed, based mainly on criticism of writing and the analytical and synthetic method. The theoretical framework is the perspective of an ageing society and technogerontology. The sociological approach enables better understanding of the sensitive problems of age-friendly robot designing from the individual point of view. It is concluded with a conceptual discussion on designing robots for the elderly. In particular, it is revealed how these issues could help in shaping social consensus about age-friendly technologies.
Project description:BackgroundMany research domains still heavily rely on paper-based data collection procedures, despite numerous associated drawbacks. The QuestionSys framework is intended to empower researchers as well as clinicians without programming skills to develop their own smart mobile apps in order to collect data for their specific scenarios.ObjectiveIn order to validate the feasibility of this model-driven, end-user programming approach, we conducted a study with 80 participants.MethodsAcross 2 sessions (7 days between Session 1 and Session 2), participants had to model 10 data collection instruments (5 at each session) with the developed configurator component of the framework. In this context, performance measures like the time and operations needed as well as the resulting errors were evaluated. Participants were separated into two groups (ie, novices vs experts) based on prior knowledge in process modeling, which is one fundamental pillar of the QuestionSys framework.ResultsStatistical analysis (t tests) revealed that novices showed significant learning effects for errors (P=.04), operations (P<.001), and time (P<.001) from the first to the last use of the configurator. Experts showed significant learning effects for operations (P=.001) and time (P<.001), but not for errors as the experts' errors were already very low at the first modeling of the data collection instrument. Moreover, regarding the time and operations needed, novices got significantly better at the third modeling task than experts were at the first one (t tests; P<.001 for time and P=.002 for operations). Regarding errors, novices did not get significantly better at working with any of the 10 data collection instruments than experts were at the first modeling task, but novices' error rates for all 5 data collection instruments at Session 2 were not significantly different anymore from those of experts at the first modeling task. After 7 days of not using the configurator (from Session 1 to Session 2), the experts' learning effect at the end of Session 1 remained stable at the beginning of Session 2, but the novices' learning effect at the end of Session 1 showed a significant decay at the beginning of Session 2 regarding time and operations (t tests; P<.001 for time and P=.03 for operations).ConclusionsIn conclusion, novices were able to use the configurator properly and showed fast (but unstable) learning effects, resulting in their performances becoming as good as those of experts (which were already good) after having little experience with the configurator. Following this, researchers and clinicians can use the QuestionSys configurator to develop data collection apps for smart mobile devices on their own.