Project description:BackgroundTrunk inclination from semirecumbent head-upright to supine-flat positioning reduces driving pressure and increases respiratory system compliance in patients with acute respiratory distress syndrome (ARDS). These effects are associated with an improved ventilatory ratio and reduction in the partial pressure of carbon dioxide (PaCO2). However, these physiological effects have not been completely studied, and their mechanisms have not yet been elucidated. Therefore, this study aimed to evaluate the effects of a change in trunk inclination from semirecumbent (45°) to supine-flat (10°) on physiological dead space and ventilation distribution in different lung regions.ResultsTwenty-two ARDS patients on pressure-controlled ventilation underwent three 60-min steps in which trunk inclination was changed from 45° (baseline) to 10° (intervention) and back to 45° (control) in the last step. Tunk inclination from a semirecumbent (45°) to a supine-flat (10°) position resulted in a higher tidal volume [371 (± 76) vs. 433 (± 84) mL (P < 0.001)] and respiratory system compliance [34 (± 10) to 41 (± 12) mL/cmH2O (P < 0.001)]. The CO2 exhaled per minute improved from 191 mL/min (± 34) to 227 mL/min (± 38) (P < 0.001). Accordingly, Bohr's dead space ratio decreased from 0.49 (± 0.07) to 0.41 (± 0.06) (p < 0.001), and PaCO2 decreased from 43 (± 5) to 36 (± 4) mmHg (p < 0.001). In addition, the impedance ratio, which divides the ventilation activity of the ventral region by the dorsal region ventilation activity in tidal images, dropped from 1.27 (0.83-1.78) to 0.86 (0.51-1.33) (p < 0.001). These results, calculated from functional EIT images, indicated further ventilation activity in the dorsal lung regions. These effects rapidly reversed once the patient was repositioned at 45°.ConclusionsA change in trunk inclination from a semirecumbent (45 degrees) to a supine-flat position (10 degrees) improved Bohr's dead space ratio and reduced PaCO2 in patients with ARDS. This effect is associated with an increase in tidal volume and respiratory system compliance, along with further favourable impedance ventilation distribution toward the dorsal lung regions. This study highlights the importance of considering trunk inclination as a modifiable determinant of physiological parameters. The angle of trunk inclination is essential information that must be reported in ARDS patients.
Project description:BackgroundThe effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure.MethodsFifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography.ResultsCompared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99).ConclusionsProne position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.
Project description:The analysis of intra-cycle velocity profile of manual wheelchair (MWC) users has been used to highlight the significant role of trunk inertia in propulsion biomechanics. Maximal wheelchair linear velocity has previously been observed to be reached after the release of the handrims both during sports activities and daily life propulsion. This paper provides a combined analysis of linear velocity and trunk kinematics in elite wheelchair racing athletes during straight-line propulsion at stabilized speeds. MWC and trunk kinematics of eight athletes (level: 7 elite, 1 intermediate; classification: T54 (5), T53 (2) and T52 (1)) were monitored during 400 m races using inertial measurement units. An average propulsion cycle was computed for each athlete. The main finding of this article is the difference in propulsion patterns among the athletes, exhibiting either 1, 2 or 3 peaks in their velocity profile. A second peak in velocity is usually assumed to be caused by the inertia of the trunk. However, the presence of a second velocity peak among more severely impaired athletes with little to no trunk motion can either be associated to the inertia of the athletes' arms or to their propulsion technique.
Project description:ObjectivesExact symmetry and perfect balance between opposite jaw halves, as well as between antagonistic teeth, is not frequently observed in natural masticatory systems. Research results show that asymmetry in our body, skull, and jaws is often related to genetic, epigenetic, environmental and individual ontogenetic factors. Our study aims to provide evidence for a significant link between masticatory asymmetry and occlusal contact between antagonist teeth by testing the hypothesis that tooth inclination is one of the mechanisms driving distribution of wear in masticatory phases in addition to dietary and cultural habits.Materials and methodsThe present work investigates the relationship between dental macrowear patterns and tooth inclinations on a sample of complete maxillary and mandibular 3D models of dental arches from 19 young and adult Yuendumu Aboriginal individuals. The analysis was carried out on first molars (M1) from all quadrants. Occlusal Fingerprint Analysis was used for the quantification of macrowear patterns, and 2D cross-sectional geometric analysis was carried out to investigate asymmetry in dental arches.ResultsThe asymmetry is highly variable on both arches, and it is associated with differences in the inclination of upper M1 crowns. Each molar has variable inclination (buccal/lingual) which influence tooth to tooth contact, producing greater or lesser variation in wear pattern. Interindividual variability of morphological variation of the occlusal relationship has to be considered in macrowear analysis.DiscussionOur results suggest that overall asymmetry in the masticatory apparatus in modern humans affects occlusal contact areas between antagonist teeth influencing macrowear and chewing efficiency during ontogeny.
Project description:BackgroundCommunity-based peer support (CBPS) groups have been effective in facilitating access to and retention in the healthcare system for patients with HIV/AIDS, cancer, diabetes, and other communicable and non-communicable diseases. Given the high incidence of morbidity that results from traumatic injuries, and the barriers to reaching and accessing care for injured patients, community-based support groups may prove to be similarly effective in this population.ObjectivesThe objective of this review is to identify the extent and impact of CBPS for injured patients.EligibilityWe included primary research on studies that evaluated peer-support groups that were solely based in the community. Hospital-based or healthcare-professional led groups were excluded.EvidenceSources were identified from a systematic search of Medline / PubMed, CINAHL, and Web of Science Core Collection.Charting methodsWe utilized a narrative synthesis approach to data analysis.Results4,989 references were retrieved; 25 were included in final data extraction. There was a variety of methodologies represented and the groups included patients with spinal cord injury (N = 2), traumatic brain or head injury (N = 7), burns (N = 4), intimate partner violence (IPV) (N = 5), mixed injuries (N = 5), torture (N = 1), and brachial plexus injury (N = 1). Multiple benefits were reported by support group participants; categorized as social, emotional, logistical, or educational benefits.ConclusionsCommunity-based peer support groups can provide education, community, and may have implications for retention in care for injured patients.
Project description:Background and objectiveThe frozen elephant trunk (FET) allows a single-stage repair of complex arch pathologies due to its stented and non-stented hybrid prosthesis (HP) features. FET inherently has its own related complications including distal stent graft-induced new entry (dSINE), failure of aortic remodelling, endoleak, reintervention, and kinking of the stent. The aim of this narrative review is to discuss the latest evidence regarding the postoperative clinical outcomes of the FET procedure. Another aim is to provide an overview of results achieved using different FET devices on the global arch prostheses market.MethodsA comprehensive literature search was conducted using multiple electronic databases to identify and extract the relevant data and information.Key content and findingsThis review found that the literature reported a 5-12% mortality rate post-FET, with varying figures depending on the prosthesis type. Between 0-18.2% of patients developed dSINE, while 0.1-28% developed endoleak. Reintervention occurred in 0-28% of patients and the incidence of kinking has been quoted between 0-8% in the literature. Reporting aortic remodelling rates was challenging due to the lack of standardisation and various measurements reported; however, all studies included in this review reported relative increase in true lumen diameter, reduction in the false lumen diameter, and/or false lumen thrombosis.ConclusionsIn conclusion, FET can achieve a favourable postoperative profile in terms of survival, complications and aortic remodelling, and remains the gold-standard treatment for thoracic aortic pathologies implicating the arch and descending thoracic aorta.
Project description:Home non-invasive ventilation (NIV) is central in the management of chronic hypercapnic respiratory failure and is associated with improvements in clinically relevant outcomes. Home NIV typically involves delivery of fixed positive inspiratory and expiratory airway pressures. These pressures do not reflect physiological changes to respiratory mechanics and airway calibre during sleep, which may impact on physiological efficacy, subsequent clinical outcomes, and therapy adherence. Novel ventilator modes have been designed in an attempt to address these issues. Volume-assured pressure support modes aim to automatically adjust inspiratory pressure to achieve a pre-set target tidal volume. The addition of auto-titrating expiratory pressure to maintain upper airway calibre is designed for patients at risk of upper airway collapse, such as obese patients and those with obstructive sleep apnoea complicating their hypercapnic failure. Heterogeneity in setup protocols, patient selection and trial design limit firm conclusions to be drawn on the clinical efficacy of these modes. However, there are data to suggest that compared to fixed-pressure NIV, volume-assured modes may improve nocturnal carbon dioxide, sleep quality and ventilator adherence in select patients. The use of the forced oscillation technique to identify expiratory flow limitation and adjust expiratory pressure to eliminate it is the most recent addition to these advanced modes and is yet to be assessed in formal clinical trials.
Project description:BackgroundEarly detection of idiopathic scoliosis is one factor in determining treatment effectiveness. Therefore, the aim of this study was to assess the importance of the size of the trunk inclination angle (ATI) for the early detection of scoliosis in preschool- and school-age children, taking into account the location and size of the spine curvature.MethodsThe study included a group of 216 children (mean age 11.54 years, standard deviation ± 3.05), who had previously untreated idiopathic scoliosis and a Cobb angle of ≥ 10°. The ATI values were compared with the corresponding Cobb angle values. The results of the ATI-Cobb correlation were compared to the ATI thresholds of 5° and 7°.ResultsIn the age groups 6-9, 10-12 and 13-17 years, the method sensitivity for the ATI ≥ 7° criterion was low at 33.90%, 27.69% and 51.29% (p < 0.05), respectively, while for the ATI ≥ 5° criterion, it was 67.8%, 69.23% and 93.48% (p < 0.05), respectively. With respect to location, significantly more frequent misdiagnoses (p < 0.05) were related to the lumbar and thoracolumbar (regions) sections of the spine in the groups aged 6-9 and 10-12 for ATI ≥ 7°; while no significant relationship was found at ATI ≥ 5°. For both ATI levels, the most frequent cases of mis- or undiagnosed scoliosis were observed among children with a Cobb angle of 10°-14° (p = 0.004).ConclusionA low predictive ATI value was demonstrated regarding scoliosis detection for the ATI 7° criterion in children aged 6-9 and 10-12 years, particularly for the lumbar and thoracolumbar locations. Adoption of the threshold of ATI 5° in screening tests for children aged 6-12 years, as well as for lower locations of scoliosis, may be more effective in the early detection of scoliosis.Trial registrationThis study was approved by the Jan Dlugosz University in Czestochowa Ethics Committee KE-U/7/2021, and conducted under the Declaration of Helsinki.
Project description:The primary factor influencing slope stability is the variation of internal mechanics within the soil-rock mixture caused by rainfall infiltration. Most existing research has focused on how rock content affects the failure of soil-rock mixture slopes. However, there has been insufficient investigation into the coupling effects of rainfall intensity and slope inclination on the stability of soil-rock mixture slopes. Therefore, the model test of soil-rock mixture slope was carried out. The coupling effects of rainfall intensity and slope inclination on water content, earth pressure, pore water pressure, and failure mode of soil-rock mixture slope were analyzed. The failure mode of soil-rock mixture slope induced by rainfall was revealed. The results indicated that an increase in rainfall intensity and slope inclination significantly contributed to the instability of soil-rock mixture slopes and the loss of fine particles. Additionally, the maximum values of water content, earth pressure, and pore water pressure increased progressively. Considering the two influencing factors of rainfall intensity and slope inclination, the calculation formulas related to the fine particle content, maximum water content, maximum earth pressure, and maximum pore water pressure of soil-rock mixture slope were established. The findings of this research provided theoretical support for the construction of soil-rock mixture slopes and the prevention and control of landslide disasters.