Project description:BackgroundThe responses of oxygen uptake efficiency (ie, oxygen uptake/ventilation = VO(2)/VE) and its highest plateau (OUEP) during incremental cardiopulmonary exercise testing (CPET) in patients with chronic left heart failure (HF) have not been previously reported. We planned to test the hypothesis that OUEP during CPET is the best single predictor of early death in HF.MethodsWe evaluated OUEP, slope of VO(2) to log(VE) (oxygen uptake efficiency slope), oscillatory breathing, and all usual resting and CPET measurements in 508 patients with low-ejection-fraction (< 35%) HF. Each had further evaluations at other sites, including cardiac catheterization. Outcomes were 6-month all-reason mortality and morbidity (death or > 24 h cardiac hospitalization). Statistical analyses included area under curve of receiver operating characteristics, ORs, univariate and multivariate Cox regression, and Kaplan-Meier plots.ResultsOUEP, which requires only moderate exercise, was often reduced in patients with HF. A low % predicted OUEP was the single best predictor of mortality (P < .0001), with an OR of 13.0 (P < .001). When combined with oscillatory breathing, the OR increased to 56.3, superior to all other resting or exercise parameters or combinations of parameters. Other statistical analyses and morbidity analysis confirmed those findings.ConclusionsOUEP is often reduced in patients with HF. Low % predicted OUEP (< 65% predicted) is the single best predictor of early death, better than any other CPET or other cardiovascular measurement. Paired with oscillatory breathing, it is even more powerful.
Project description:Background: The ratio of oxygen uptake (VO2) to minute ventilation (VE) is described as the oxygen uptake efficiency slope (OUES). OUES has been suggested as a valuable submaximal cardiorespiratory index; however, its characteristics in endurance athletes remain unknown. In this study, we a) investigated OUES between different time intervals, b) assessed their prediction power for VO2peak, and c) derived new prediction equations for OUES tailored for well-trained individuals. Materials and Methods: A total of 77 male (age = 21.4 ± 4.8 yrs; BMI = 22.1 ± 1.6 kg·m-2; peak oxygen uptake = 4.40 ± 0.64 L·min-1) and 63 female individuals (age = 23.4 ± 4.3 yrs; BMI = 23.1 ± 1.6 kg·m-2; peak oxygen uptake = 3.21 ± 0.48 L·min-1) underwent the cycling cardiopulmonary exercise test. OUES was measured at 75%, 90%, and 100% of exercise duration. Prediction power and new models were derived with the multiple linear regression method. Results: In male subjects, OUES [mL·min-1/L·min-1] from 75% = 4.53 ± 0.90, from 90% = 4.52 ± 0.91, and from 100% = 4.41 ± 0.87. In female subjects, OUES [mL·min-1/L·min-1] from 75% = 3.50 ± 0.65, from 90% = 3.49 ± 0.62, and from 100% = 3.41 ± 0.58. OUES did not differ between time intervals in male (p = 0.65) and female individuals (p = 0.69). OUES strongly predicts peak VO2 independently from the measuring interval (β = 0.71-0.80; R 2 = 0.50-0.63). The prediction model designed for elite athletes was OUES [mL·min-1/L·min-1] = -1.54 + 2.99; BSA [m2]-0.0014; (age [in years]; sex [1 = male, 2 = female]) (R 2 = 0.36). Conclusion: OUES enables an accurate prediction of peak cardiorespiratory fitness in elite endurance athletes. OUES is a feasible alternative to maximal exercise testing. A new prediction equation should be used for highly trained individuals. Physicians should understand OUES physiology to properly assess the cardiorespiratory response to exercise in athletic cohorts.
Project description:Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.
Project description:PurposeWe tested the hypothesis that the described increase in oxygen uptake ([Formula: see text])-plateau incidence following a heavy-severe prior exercise is caused by a steeper increase in [Formula: see text] and muscle fiber activation in the submaximal intensity domain.MethodsTwenty-one male participants performed a standard ramp test, a [Formula: see text] verification bout, an unprimed ramp test with an individualized ramp slope and a primed ramp test with the same ramp slope, which was preceded by an intensive exercise at 50% of the difference between gas exchange threshold and maximum workload. Muscle fiber activation was recorded from vastus lateralis, vastus medialis, and gastrocnemius medialis using a surface electromyography (EMG) device in a subgroup of 11 participants. Linear regression analyses were used to calculate the [Formula: see text]-([Formula: see text]) and EMG-(∆RMS/∆P) ramp test kinetics.ResultsTwenty out of the 21 participants confirmed their [Formula: see text] in the verification bout. The [Formula: see text]-plateau incidence in these participants did not differ between the unprimed (n = 8) and primed (n = 7) ramp test (p = 0.500). The [Formula: see text] was lower in the primed compared to the unprimed ramp test (9.40 ± 0.66 vs. 10.31 ± 0.67 ml min-1 W-1, p < 0.001), whereas the ∆RMS/∆P did not differ between the ramp tests (0.62 ± 0.15 vs. 0.66 ± 0.14% W-1; p = 0.744).ConclusionThese findings do not support previous studies, which reported an increase in [Formula: see text]-plateau incidence as well as steeper increases in [Formula: see text] and muscle fiber activation in the submaximal intensity domain following a heavy-severe prior exercise.
Project description:Background: Ventilatory efficiency (VE/VCO2) is a strong predictor of cardiovascular diseases and defines individuals' responses to exercise. Its characteristics among endurance athletes (EA) remain understudied. In a cohort of EA, we aimed to (1) investigate the relationship between different methods of calculation of VE/VCO2 and (2) externally validate prediction equations for VE/VCO2. Methods: In total, 140 EA (55% males; age = 22.7 ± 4.6 yrs; BMI = 22.6 ± 1.7 kg·m-2; peak oxygen uptake = 3.86 ± 0.82 L·min-1) underwent an effort-limited cycling cardiopulmonary exercise test. VE/VCO2 was first calculated to ventilatory threshold (VE/VCO2-slope), as the lowest 30-s average (VE/VCO2-Nadir) and from whole exercises (VE/VCO2-Total). Twelve prediction equations for VE/VCO2-slope were externally validated. Results: VE/VCO2-slope was higher in females than males (27.7 ± 2.6 vs. 26.1 ± 2.0, p < 0.001). Measuring methods for VE/VCO2 differed significantly in males and females. VE/VCO2 increased in EA with age independently from its type or sex (β = 0.066-0.127). Eleven equations underestimated VE/VCO2-slope (from -0.5 to -3.6). One equation overestimated VE/VCO2-slope (+0.2). Predicted and observed measurements differed significantly in nine models. Models explained a low amount of variance in the VE/VCO2-slope (R2 = 0.003-0.031). Conclusions: VE/VCO2-slope, VE/VCO2-Nadir, and VE/VCO2-Total were significantly different in EA. Prediction equations for the VE/VCO2-slope were inaccurate in EA. Physicians should be acknowledged to properly assess cardiorespiratory fitness in EA.
Project description:A flattening of the oxygen uptake-work rate relationship at severe exercise indicates the achievement of maximum oxygen uptake [Formula: see text]. Unfortunately, a distinct plateau [Formula: see text] at [Formula: see text]is not found in all participants. The aim of this investigation was to critically review the influence of research methods and physiological factors on the [Formula: see text] incidence. It is shown that many studies used inappropriate definitions or methodical approaches to check for the occurrence of a [Formula: see text]. In contrast to the widespread assumptions it is unclear whether there is higher [Formula: see text] incidence in (uphill) running compared to cycling exercise or in discontinuous compared to continuous incremental exercise tests. Furthermore, most studies that evaluated the validity of supramaximal verification phases, reported verification bout durations, which are too short to ensure that [Formula: see text] have been achieved by all participants. As a result, there is little evidence for a higher [Formula: see text] incidence and a corresponding advantage for the diagnoses of [Formula: see text] when incremental tests are supplemented by supramaximal verification bouts. Preliminary evidence suggests that the occurrence of a [Formula: see text] in continuous incremental tests is determined by physiological factors like anaerobic capacity, [Formula: see text]-kinetics and accumulation of metabolites in the submaximal intensity domain. Subsequent studies should take more attention to the use of valid [Formula: see text] definitions, which require a cut-off at ~ 50% of the submaximal [Formula: see text] increase and rather large sampling intervals. Furthermore, if verification bouts are used to verify the achievement of [Formula: see text]/[Formula: see text], it should be ensured that they can be sustained for sufficient durations.
Project description:AbstractTo evaluate the real aerobic capacity is difficult due to impaired limbs function in stroke patients. Oxygen uptake efficiency slope (OUES) could represent the aerobic capacity in submaximal exercise test. Hence, we designed this observational study to investigate the application of the OUES for evaluating aerobic capacity in these patients.Thirty-seven stroke patients were classified into 2 groups according to their Brunnstrom stage of affected lower limbs. Patients underwent cardiopulmonary exercise testing to assess cardiorespiratory fitness. Minute ventilation and oxygen consumption were measured, and OUES was calculated, compared with healthy reference values, and correlated with the peak oxygen consumption. The predictive validity of submaximal OUES was derived.Study participants' OUES (median 566.2 [IQR, 470.0-711.6]) was 60% of healthy reference values and correlated positively with the peak oxygen consumption (r = 0.835) (P < .01). The predictive validity of oxygen uptake efficiency slope at 50% of maximal exercise duration (OUES50) and oxygen uptake efficiency slope at 75% of maximal exercise duration (OUES75) for oxygen uptake efficiency slope at 100% of maximal exercise duration (OUES100) was 0.877 and 0.973, respectively (P < .01). The OUES50, OUES75, and OUES100 groups were not significantly different; agreement of submaximal and maximal OUES values was strong.OUES is a valuable submaximal index for evaluating cardiorespiratory fitness in stroke patients. Moderate-to-high concurrent validity of this parameter with peak oxygen consumption and the high predictive validity of OUES50 and OUES75 for OUES100 suggest maximal exercise testing in stroke patients who cannot reach maximal exercise is unnecessary.
Project description:Significant heterogeneity exists in practice patterns and algorithms used for cardiac screening before kidney transplant. Cardiorespiratory fitness, as measured by peak oxygen uptake (VO2peak), is an established validated predictor of future cardiovascular morbidity and mortality in both healthy and diseased populations. The literature supports its use among asymptomatic patients in abrogating the need for further cardiac testing. We outlined a pre-renal transplant screening algorithm to incorporate VO2peak testing among a population of asymptomatic high-risk patients (with diabetes mellitus and/or >50 years of age). Only those with VO2peak <17 mL/kg per minute (equivalent to <5 metabolic equivalents) underwent further noninvasive cardiac screening tests. We conducted a retrospective study of the a priori dichotomization of the VO2peak <17 versus ≥17 mL/kg per minute to determine negative and positive predictive value of future cardiac events and all-cause mortality. We report a high (>90%) negative predictive value, indicating that VO2peak ≥17 mL/kg per minute is effective to rule out future cardiac events and all-cause mortality. However, lower VO2peak had low positive predictive value and should not be used as a reliable metric to predict future cardiac events and/or mortality. In addition, a simple mathematical calculation documented a cost savings of ≈$272 600 in the cardiac screening among our study cohort of 637 patients undergoing evaluation for kidney and/or pancreas transplant. We conclude that incorporating an objective measure of cardiorespiratory fitness with VO2peak is safe and allows for a cost savings in the cardiovascular screening protocol among higher-risk phenotype (with diabetes mellitus and >50 years of age) being evaluated for kidney transplant.
Project description:IntroductionVentilatory efficiency (VE/VCO2 slope) has been shown superior to peak oxygen consumption (VO2) for prediction of post-operative pulmonary complications in patients undergoing thoracotomy. VE/VCO2 slope is determined by ventilatory drive and ventilation/perfusion mismatch whereas VO2 is related to cardiac output and arteriovenous oxygen difference. We hypothesized pre-operative VO2 predicts post-operative cardiovascular complications in patients undergoing lung resection.MethodsLung resection candidates from a published study were evaluated by post-hoc analysis. All of the patients underwent preoperative cardiopulmonary exercise testing. Post-operative cardiovascular complications were assessed during the first 30 post-operative days or hospital stay. One-way analysis of variance or the Kruskal-Wallis test, and multivariate logistic regression were used for statistical analysis and data summarized as median (IQR).ResultsOf 353 subjects, 30 (9%) developed pulmonary complications only (excluded from further analysis), while 78 subjects (22%) developed cardiovascular complications and were divided into two groups for analysis: cardiovascular only (n = 49) and cardiovascular with pulmonary complications (n = 29). Compared to patients without complications (n = 245), peak VO2 was significantly lower in the cardiovascular with pulmonary complications group [19.9 ml/kg/min (16.5-25) vs. 16.3 ml/kg/min (15-20.3); P<0.01] but not in the cardiovascular only complications group [19.9 ml/kg/min (16.5-25) vs 19.0 ml/kg/min (16-23.1); P = 0.18]. In contrast, VE/VCO2 slope was significantly higher in both cardiovascular only [29 (25-33) vs. 31 (27-37); P = 0.05] and cardiovascular with pulmonary complication groups [29 (25-33) vs. 37 (34-42); P<0.01)]. Logistic regression analysis showed VE/VCO2 slope [OR = 1.06; 95%CI (1.01-1.11); P = 0.01; AUC = 0.74], but not peak VO2 to be independently associated with post-operative cardiovascular complications.ConclusionVE/VCO2 slope is superior to peak VO2 for prediction of post-operative cardiovascular complications in lung resection candidates.