Project description:The main aim of this paper is to give an improvement of the recent result on the sharpness of the Jensen inequality. The results given here are obtained using different Green functions and considering the case of the real Stieltjes measure, not necessarily positive. Finally, some applications involving various types of f-divergences and Zipf–Mandelbrot law are presented.
Project description:MotivationThe evolution of complex diseases can be modeled as a time-dependent nonlinear dynamic system, and its progression can be divided into three states, i.e., the normal state, the pre-disease state and the disease state. The sudden deterioration of the disease can be regarded as the state transition of the dynamic system at the critical state or pre-disease state. How to detect the critical state of an individual before the disease state based on single-sample data has attracted many researchers' attention.MethodsIn this study, we proposed a novel approach, i.e., single-sample-based Jensen-Shannon Divergence (sJSD) method to detect the early-warning signals of complex diseases before critical transitions based on individual single-sample data. The method aims to construct score index based on sJSD, namely, inconsistency index (ICI).ResultsThis method is applied to five real datasets, including prostate cancer, bladder urothelial carcinoma, influenza virus infection, cervical squamous cell carcinoma and endocervical adenocarcinoma and pancreatic adenocarcinoma. The critical states of 5 datasets with their corresponding sJSD signal biomarkers are successfully identified to diagnose and predict each individual sample, and some "dark genes" that without differential expressions but are sensitive to ICI score were revealed. This method is a data-driven and model-free method, which can be applied to not only disease prediction on individuals but also targeted drug design of each disease. At the same time, the identification of sJSD signal biomarkers is also of great significance for studying the molecular mechanism of disease progression from a dynamic perspective.
Project description:BackgroundBeing a carrier of the apolipoprotein E (APOE) ε4 allele is a clear risk factor for development of Alzheimer's disease (AD). On some neurocognitive tests, there are smaller differences between carriers and noncarriers, while other tests show larger differences.AimsWe explore whether the size of the difference between carriers and noncarriers is a function of how well the tests measure general intelligence, so whether there are Jensen effects.MethodsWe used the method of correlated vectors on 441 Korean older adults at risk for AD and 44 with AD.ResultsCorrelations between APOE carriership and test scores ranged from -.05 to .11 (normal), and -.23 to .54 (AD). The differences between carriers and noncarriers were Jensen effects: r = .31 and r = .54, respectively.ConclusionA composite neurocognitive score may show a clearer contrast between APOE carriers and noncarriers than a large number of scores of single neurocognitive tests.
Project description:Software optical mark recognition (SOMR) is the process whereby information entered on a survey form or questionnaire is converted using specialized software into a machine-readable format. SOMR normally requires input fields to be completely darkened, have no internal labels, or be filled with a soft pencil, otherwise mark detection will be inaccurate. Forms can also have print and scan artefacts that further increase the error rate. This article presents a new method of mark detection that improves over existing techniques based on pixel counting and simple thresholding. Its main advantage is that it can be used under a variety of conditions and yet maintain a high level of accuracy that is sufficient for scientific applications. Field testing shows no software misclassification in 5695 samples filled by trained personnel, and only two misclassifications in 6000 samples filled by untrained respondents. Sensitivity, specificity, and accuracy were 99.73%, 99.98%, and 99.94% respectively, even in the presence of print and scan artefacts, which was superior to other methods tested. A separate direct comparison for mark detection showed a sensitivity, specificity, and accuracy respectively of 99.7%, 100.0%, 100.0% (new method), 96.3%, 96.0%, 96.1% (pixel counting), and 99.9%, 99.8%, 99.8% (simple thresholding) on clean forms, and 100.0%, 99.1%, 99.3% (new method), 98.4%, 95.6%, 96.2% (pixel counting), 100.0%, 38.3%, 51.4% (simple thresholding) on forms with print artefacts. This method is designed for bubble and box fields, while other types such as handwriting fields require separate error control measures.
Project description:Motivated by the need to assess HIV vaccine efficacy, previous studies proposed an extension of the discrete competing risks proportional hazards model, in which the cause of failure is replaced by a continuous mark only observed at the failure time. However the model assumptions may fail in several ways, and no diagnostic testing procedure for this situation has been proposed. A goodness-of-fit test procedure for the stratified mark-specific proportional hazards model in which the regression parameters depend nonparametrically on the mark and the baseline hazards depends nonparametrically on both time and the mark is proposed. The test statistics are constructed based on the weighted cumulative mark-specific martingale residuals. The critical values of the proposed test statistics are approximated using the Gaussian multiplier method. The performance of the proposed tests are examined extensively in simulations for a variety of the models under the null hypothesis and under different types of alternative models. An analysis of the 'Step' HIV vaccine efficacy trial using the proposed method is presented. The analysis suggests that the HIV vaccine candidate may increase susceptibility to HIV acquisition.