Project description:IntroductionSelected patients with locally advanced or metastatic soft tissue and bone sarcomas (STBS) may benefit from intensive local treatment, such as stereotactic radiotherapy (SRT). This study aimed to summarize the utilization and outcomes of SRT in STBS and to identify predictive factors for progression and survival.Materials and methodsConsecutive patients with advanced STBS who underwent STBS in a sarcoma tertiary center were identified. We collected tumor- and treatment-related factors. Endpoints comprised time to local progression (TTLP), local progression-free survival (LPFS), time to progression, progression-free survival, and overall survival (OS). The Cox proportional-hazards model was used to identify prognostic factors.ResultsWe identified 141 patients who underwent 233 SRTs. Median follow-up was 21 months. Local and distant progression occurred after 19 and 163 SRTs, respectively. SRT for lung metastases was predictive for better TTLP and LPFS (hazard ratio, HR = 0.12, p = 0.007 and HR = 0.42, p = 0.002, respectively). Bone sarcoma (HR for TTLP = 3.18, p = 0.043; HR for LPFS = 1.99, p = 0.028) and lower administered dose (HR for TTLP = 0.98, p = 0.007; HR for LPFS = 0.99, p = 0.012) were predictive for worse TTLP and LPFS. SRT for oligometastases (HR = 0.46, p = 0.021) and lung metastases (HR = 0.55, p = 0.046) was predictive for better OS, whereas diagnosis of bone sarcoma (HR = 2.05, p = 0.029) was predictive for worse OS.ConclusionSRT provides excellent local control in STBS patients without significant toxicity. Patients with oligometastatic disease, lung metastases, and soft tissue sarcomas benefit the most from SRT. The dose escalation moderately enhances local control; however, it does not translate into better survival.
Project description:Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Project description:Although multimodal therapies including surgery, chemotherapy, and radiotherapy have improved clinical outcomes of patients with bone and soft tissue sarcomas, the prognosis of patients has plateaued over these 20 years. Immunotherapies have shown the effectiveness for several types of advanced tumors. Immunotherapies, such as cytokine therapies, vaccinations, and adoptive cell transfers, have also been investigated for bone and soft tissue sarcomas. Cytokine therapies with interleukin-2 or interferons have limited efficacy because of their cytotoxicities. Liposomal muramyl tripeptide phosphatidylethanolamine (L-MTP-PE), an activator of the innate immune system, has been approved as adjuvant therapeutics in combination with conventional chemotherapy in Europe, which has improved the 5-year overall survival of patients. Vaccinations and transfer of T cells transduced to express chimeric antigen receptors have shown some efficacy for sarcomas. Ipilimumab and nivolumab are monoclonal antibodies designed to inhibit immune checkpoint mechanisms. These antibodies have recently been shown to be effective for patients with melanoma and also investigated for patients with sarcomas. In this review, we provide an overview of various trials of immunotherapies for bone and soft tissue sarcomas, and discuss their potential as adjuvant therapies in combination with conventional therapies.
Project description:Immune checkpoint inhibitors, especially the programmed cell death receptor-1/ligand 1 (PD-1/L1) inhibitors, displayed promising efficacy in several solid tumor types and hematological malignancies. Data related to their activity in soft-tissue sarcomas (STS) are scarce.We performed a pooled analysis of clinical trials investigating a PD1 or PD-L1 antagonist in patients with advanced STS. Three hundred eighty-four patients were included in the pooled analysis; of those, 153 (39.8%) received a PD1/PD-L1 antagonist as a single agent. In patients treated with anti-PD1/PDL1 as a single agent, the overall response rate (ORR) and non-progression rate (NPR) were 15.1% and 58.5% respectively. In patients treated with a combination regimen, the ORR and NPR were 13.4% and 55.8% respectively. Analysis by histological subtype revealed that patients with alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma exhibited the highest response rates and leiomyosarcoma the lowest. PD-L1 expression rate was low and inconsistently associated with objective response.PD-1/PD-L1 antagonists have limited activity in unselected STS. Future studies should implement histology and immune-based stratification of STS in their design as well as sequential blood and tissue sampling to better understand the mechanisms of resistance and response given sarcomas inherent heterogeneity.
Project description:Due to the rarity and heterogeneity of bone and soft-tissue sarcomas, investigation into molecular targets and new treatments has been particularly challenging. Although intensive chemotherapy and establishment of surgical procedures have improved the outcomes of patients with sarcoma, the curative rate of recurrent and metastatic sarcomas is still not satisfactory. Recent basic science research has revealed some of the mechanisms of progression and metastasis of malignancies including proliferation, apoptosis, angiogenesis, tumor microenvironment, migration, invasion, and regulation of antitumor immune systems. Based on these basic studies, new anticancer drugs, including pazopanib, trabectedin, eribulin, and immune checkpoint inhibitors have been developed and the efficacies and safety of the new drugs have been assessed by clinical trials. This review summarizes new molecular therapeutic targets and advances in the treatment for bone and soft tissue sarcomas.
Project description:BackgroundSoft tissue sarcomas (STS) represent a diverse group of rare malignant tumors. Currently, five to six weeks of preoperative radiotherapy (RT) combined with surgery constitute the mainstay of therapy for localized high-grade sarcomas (G2-G3). Growing evidence suggests that shortening preoperative RT courses by hypofractionation neither increases toxicity rates nor impairs oncological outcomes. Instead, shortening RT courses may improve therapy adherence, raise cost-effectiveness, and provide more treatment opportunities for a wider range of patients. Presumed higher rates of adverse effects and worse outcomes are concerns about hypofractionated RT (HFRT) for STS. This systematic review summarizes the current evidence on preoperative HFRT for the treatment of STS and discusses toxicity and oncological outcomes compared to normofractionated RT.MethodsWe conducted a systematic review of clinical trials describing outcomes for preoperative HFRT in the management of STS using PubMed, the Cochrane library, the Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, Embase, and Ovid Medline. We followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Trials on retroperitoneal sarcomas, postoperative RT, and hyperthermia were excluded. Articles published until November 30th, 2021, were included.ResultsInitial search yielded 94 articles. After removal of duplicate and ineligible articles, 13 articles qualified for analysis. Eight phase II trials and five retrospective analyses were reviewed. Most trials applied 5 × 5 Gy preoperatively in patients with high-grade STS. HFRT courses did not show increased rates of adverse events compared to historical trials of normofractionated RT. Toxicity rates were mostly comparable or lower than in trials of normofractionated RT. Moreover, HFRT achieved comparable local control rates with shorter duration of therapy. Currently, more than 15 prospective studies on HFRT + / - chemotherapy are ongoing.ConclusionsRetrospective data and phase II trials suggest preoperative HFRT to be a reasonable treatment modality for STS. Oncological outcomes and toxicity profiles were favorable. To date, our knowledge is mostly derived from phase II data. No randomized phase III trial comparing normofractionated and HFRT in STS has been published yet. Multiple ongoing phase II trials applying HFRT to investigate acute and late toxicity will hopefully bring forth valuable findings.
Project description:Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes.
Project description:Recently, the possibility of PD1 pathway-targeted therapy has been extensively studied in various human malignant tumors. However, no previous study has investigated their potential application for soft-tissue sarcomas (STS). In this study, we evaluated the clinical impact of intra-tumoral infiltration of PD1-positive lymphocytes and PD-L1 expression in tumor cells in 105 cases of STS. Intra-tumoral infiltration of PD1-positive lymphocytes and PD-L1 expression were seen in 65% and 58% of STS, respectively. Both PD1-positivity and PD-L1 expression were significantly associated with advanced clinicopathological parameters such as higher clinical stage, presence of distant metastasis, higher histological grade, poor differentiation of tumor, and tumor necrosis. Moreover, both PD1-positivity and PD-L1 positivity were independent prognostic indicators of overall survival (OS) and event-free survival (EFS) of STS by multivariate analysis. In addition, the combined pattern of PD1- and PD-L1-positivity was also an independent prognostic indicator for OS and EFS by multivariate analysis. The patents with a PD1(+)/PD-L1(+) pattern had the shortest survival time. In conclusion, this study is the first to demonstrate that the infiltration of PD1 positive lymphocytes and PD-L1 expression in STS cells could be used as novel prognostic indicators for STS. Moreover, the evaluation of PD1- and PD-L1-positivity in STS is also available as possible criteria for selection of patients suitable for PD1-based immunotherapy.
Project description:ObjectivesMost epidemiologic studies on soft tissue sarcomas (STS) and bone sarcomas (BS) are performed in western countries, with few in the Middle East and North Africa region. We describe the epidemiology of sarcomas in Lebanon using the medical records database at the American University of Beirut Medical Center (AUBMC).MethodsThis single-center retrospective cohort study included patients with sarcomas registered in the database between 2015 and 2019. Their charts were reviewed for baseline characteristics, tumor biology and location, treatment modalities, recurrence, metastasis, and death.ResultsThe cohort included 234 patients with STS and 99 patients with BS. Most tumors were <10 cm in size. The most common subtypes were liposarcoma for STS and osteosarcoma for BS. The most common location of STS was the thigh. The most frequent sites of STS metastasis were the lungs. Histological subtype, smoking status, and tumor size and grade were significant for progression-free survival (PFS) in patients with STS. By multivariable analysis, smoking was significantly associated with poorer PFS in STS. For BS, only tumor grade was significant for PFS.ConclusionThe epidemiology of sarcomas at AUBMC is similar to that previously reported. Smoking history was associated with poorer survival in patients with STS.
Project description:Immune checkpoint proteins, such as PD-L1 and PD-1, are important in several cancers; however, their role in osteosarcoma (OSA) and soft tissue sarcoma (STS) remains unclear. Our aims were to determine whether subsets of OSA/STS harbor tumor-infiltrating lymphocytes (TILs) and express PD-L1, and how PD-L1 expression is related to clinical outcome. Tissue sections of 25 cases each of untreated undifferentiated pleomorphic sarcoma (UPS), myxofibrosarcoma (MFS), liposarcoma (LPS) and 24 of leiomyosarcoma (LMS) were subjected to immunohistochemistry (IHC) for immune cells, PD-L1 and PD-1. RT-qPCR was utilized to quantify levels of PD-L1 mRNA from 33 UPS, 57 MFS and 79 OSA primary-untreated specimens. PD-L1 mRNA levels were tested for their correlation with overall survival in patients presenting without metastases. Transcriptome analysis evaluated biological pathway differences between high and low PD-L1 expressers. A subset of UPS and MFS contained TILs and expressed PD-L1 and PD-1; LMS and LPS did not. PD-L1 levels by IHC and RT-qPCR were positively correlated. PD-L1 over-expression was associated with better survival for UPS and OSA, but not MFS. The Th1 pathway was significantly activated in UPS with high levels of PD-L1 and improved survival. Some sarcoma subtypes harbor TILs and express PD-L1. Patients with UPS and OSA with high levels of PD-L1 had better overall survival than those with low expression levels. Important biological pathways distinguish PD-L1 high and low groups. The stratification of patients with OSA/STS with respect to potential immune therapies may be improved through investigation of the expression of immune cells and checkpoint proteins.