Project description:Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.
Project description:The antibody-dependent enhancement (ADE) effect of a PRRSV infection is that the preexisting sub- or non-neutralizing antibodies specific against PRRSV can facilitate the virus entry and replication, and it is likely to be a great obstacle for the selection of immune strategies and the development of high-efficiency PRRSV vaccines. However, the proteomic characterization of primary alveolar macrophages (PAMs) with a PRRSV-ADE infection has not yet been investigated so far. Therefore, we performed a tandem mass tag (TMT)-based quantitative proteomic analysis of PAMs with a PRRSV-ADE infection in this study. The results showed that a total of 3935 differentially expressed proteins (DEPs) were identified in the PAMs infected with PRRSV-ADE, including 2004 up-regulated proteins and 1931 down-regulated proteins. Further, the bioinformatics analysis for these DEPs revealed that a PRRSV-ADE infection might disturb the functions of ribosome, proteasome and mitochondria. Interestingly, we also found that the expression of the key molecules in the innate immune pathways and antiviral proteins were significantly down-regulated during a PRRSV-ADE infection. This study was the first attempt to analyze the proteomic characterization of PAMs with a PRRSV-ADE infection in vitro. Additionally, the findings will provide valuable information for a better understanding of the mechanism of virus-antibody-host interactions during a PRRSV-ADE infection.
Project description:Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A 'cardiac-specific finger print' of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a 'MAS-signalosome' model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of 'signalosome' components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.
Project description:In the brain, the Homer protein family modulates excitatory signal transduction and receptor plasticity through interactions with other proteins in dendritic spines. Homer proteins are implicated in a variety of psychiatric disorders such as schizophrenia and addiction. Since long Homers serve as scaffolding proteins, identifying their interacting partners is an important first step in understanding their biological function and could help to guide the design of new therapeutic strategies. The present study set out to document Homer2-interacting proteins in the mouse brain using a co-immunoprecipitation-based mass spectrometry approach where Homer2 knockout samples were used to filter out non-specific interactors. We found that in the mouse brain, Homer2 interacts with a limited subset of its previously reported interacting partners (3 out of 31). Importantly, we detected an additional 15 novel Homer2-interacting proteins, most of which are part of the N-methyl-D-aspartate receptor signaling pathway. These results corroborate the central role Homer2 plays in glutamatergic transmission and expand the network of proteins potentially contributing to the behavioral abnormalities associated with altered Homer2 expression.SignificanceLong Homer proteins are scaffolding proteins that regulate signal transduction in neurons. Identifying their interacting partners is key to understanding their function. We used co-immunoprecipitation in combination with mass spectrometry to establish the first comprehensive list of Homer2-interacting partners in the mouse brain. The specificity of interactions was evaluated using Homer2 knockout brain tissue as a negative control. The set of proteins that we identified minimally overlaps with previously reported interacting partners of Homer2; however, we identified novel interactors that are part of a signaling cascade activated by glutamatergic transmission, which improves our mechanistic understanding of the role of Homer2 in behavior.
Project description:G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the ?(2)-adrenergic receptor (?(2)AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified ?(2)AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated ?(2)AR pull-down, 242 proteins in the inverse agonist-activated ?(2)AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the ?(2)AR-interacting proteins isolated was confirmed by Western blot; three known ?(2)AR-interacting proteins (Gs?, NHERF-2, and Grb2) and 3 newly identified known ?(2)AR-interacting proteins (AMPK?, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of ?(2)AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis.
Project description:We used the high-throughput sequencing and inhibitors to screen microRNAs that play the role in anti-porcine reproductive and respiratory syndrome virus (PRRSV) responses in porcine alveolar macrophages (PAMs).
Project description:Transcriptomes analysis of long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection in vitro. We obtained 105,627,026 clean reads from 109,443,286 raw reads. A total of 951 annotated and 751 novel lncRNAs were identified. PAMs showed distinct transcriptome profiles after PRRSV infection. It was observed that 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control group PAMs.
Project description:Viral pathogenesis results from changes in host cells due to virus usurpation of the host cell and the innate cellular responses to thwart infection. We measured global changes in protein expression and localization in HIV-1 infected T-cells using subcellular fractionation and the Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) proteomic platform. Eight biological replicates were performed in two independent experimental series. In silico merging of both experiments identified 287 proteins with altered expression (p < .05) between control and infected cells- 172 in the cytoplasm, 84 in the membrane, and 31 in nuclei. 170 of the proteins are components of the NIH HIV interaction database. Multiple Reaction Monitoring and traditional immunoblotting validated the altered expression of several factors during infection. Numerous factors were found to affect HIV infection in gain- and loss-of-expression infection assays, including the intermediate filament vimentin which was found to be required for efficient infection.
Project description:The interaction between viral membrane associate proteins and host cellular surface molecules should facilitate the attachment and entry of OsHV-1 into host cells. Thus, blocking the putative membrane proteins ORF25 and ORF72 of OsHV-1 with antibodies that have previously been reported to subdue OsHV-1 replication in host cells, especially ORF25. In this study, prey proteins in host hemocytes were screened by pull-down assay with recombinant baits ORF25 and ORF72, respectively. Gene Ontology (GO) analysis of these prey proteins revealed that most of them were mainly associated with binding, structural molecule activity and transport activity in the molecular function category. The protein-protein interaction (PPI) network of the prey proteins was constructed by STRING and clustered via K-means. For both ORF25 and ORF72, three clusters of these prey proteins were distinguished that were mainly associated with cytoskeleton assembly, energy metabolism and nucleic acid processing. ORF25 tended to function in synergy with actins, while ORF72 functioned mainly with tubulins. The above results suggest that these two putative membrane proteins, ORF25 and ORF72, might serve a role in the transport of viral particles with the aid of a cytoskeleton inside cells.