Project description:Arsenic is an environmental factor associated with epithelial-mesenchymal transition (EMT). Since macrophages play a crucial role in regulating EMT, we studied the effects of arsenic on macrophage polarization. We first determined the arsenic concentrations to be used by cell viability assays in conjunction with previous studies. In our results, arsenic treatment increased the alternatively activated (M2) macrophage markers, including arginase 1 (ARG-1) gene expression, chemokine (C-C motif) ligand 16 (CCL16), transforming growth factor-β1 (TGF-β1), and the cluster of differentiation 206 (CD206) surface marker. Arsenic-treated macrophages promoted A549 lung epithelial cell invasion and migration in a cell co-culture model and a 3D gel cell co-culture model, confirming that arsenic treatment promoted EMT in lung epithelial cells. We confirmed that arsenic induced autophagy/mitophagy by microtubule-associated protein 1 light-chain 3-II (LC3 II) and phosphor-Parkin (p-Parkin) protein markers. The autophagy inhibitor chloroquine (CQ) recovered the expression of the inducible nitric oxide synthase (iNOS) gene in arsenic-treated M1 macrophages, which represents a confirmation that arsenic indeed induced the repolarization of classically activated (M1) macrophage to M2 macrophages through the autophagy/mitophagy pathway. Next, we verified that arsenic increased M2 cell markers in mouse blood and lungs. This study suggests that mitophagy is involved in the arsenic-induced M1 macrophage switch to an M2-like phenotype.
Project description:Reticulocalbin 1 (RCN1), a calcium-binding protein located in the endoplasmic reticulum (ER) lumen, contains six conserved regions. Its main functions include maintaining intracellular homeostasis and regulating cell proliferation and apoptosis, and it plays an important role in the development of various tumours. However, the exact function of RCN1 in oral squamous cell carcinoma (OSCC) is not fully understood. Therefore, the aim of this study was to investigate the effects of RCN1 on the biological behaviour of OSCC and the regulation of tumour-associated macrophage (TAM) polarization. The expression of RCN1 in OSCC and normal oral mucosa was evaluated through bioinformatics analysis and immunohistochemical staining. The growth, migration, and invasion of OSCC cells were observed after knockdown of RCN1 using CCK-8 and Transwell assays. Apoptosis was detected by flow cytometry. The effect of tumour cell-derived RCN1 on the polarization of THP-1 macrophages was investigated by establishing a coculture model of THP-1 macrophages and OSCC cells. Additionally, changes in the expression levels of relevant proteins were detected using Western blotting. The upregulation of RCN1 in tumour tissues compared to normal oral mucosal tissues is associated with a poor prognosis and can be utilized as a prognostic indicator for OSCC. Knockdown of RCN1 inhibited the proliferation, migration, and invasion of OSCC cells. Additionally, knockdown of RCN1 in Cal-27 and SCC-25 cells resulted in inhibition of the M2 polarization of THP-1 macrophages. RCN1 knockdown inhibits OSCC progression and M2 macrophage polarization. Targeting RCN1 may be a promising approach for OSCC treatment.
Project description:FXR is a key molecule that modulates anti-inflammatory activity in the intestinal-liver axis. Although FXR has pleiotropic functions including regulation of liver inflammation and activation of macrophages, it remains unclear whether it is involved in macrophage polarization. In this paper we demonstrated that stimulation of macrophages derived from the bone marrow using an FXR agonist activated polarization toward M2 but not M1 macrophages. The treatment of mice with chitin skewed macrophage polarization towards M2 macrophages, while co-treatment with an FXR agonist further promoted the polarization toward M2 macrophages in vivo. This skewed polarization towards M2 macrophages by an FXR agonist was accompanied by increased expression of signaling molecules related to the retinoic acid receptor. Inhibition of the retinoic acid receptor suppressed FXR agonist-mediated M2 macrophage polarization, indicating that this polarization was, at least, partly dependent on the retinoic acid receptor pathway. These data demonstrate that FXR has a role in polarization toward M2 macrophages and suggest a possible therapeutic potential of FXR agonists in M2 macrophage-related conditions.
Project description:BackgroundHuman endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a member of B7 family, which is upregulated in multiple tumors. However, its exact functions in non-small cell lung cancer (NSCLC) have not been fully understood. This study aimed to investigate the biological roles of HHLA2 in human NSCLC and the relevant mechanisms. In addition, the effects of tumor cell-derived HHLA2 on tumor-associated macrophage (TAM) polarization were explored.MethodsNSCLC cell growth, migration, and invasion were assessed by colony formation and modified Boyden chamber assays. Cell cycle and the CD163+ TAMs were examined by flow cytometry. A co-culture model of THP-1 macrophages and NSCLC cells was conducted to investigate the impacts of tumor cell-derived HHLA2 on THP-1 macrophage polarization. Moreover, a xenograft nude mouse model was established to explore the effects of HHLA2 on tumorigenesis in vivo.ResultsHHLA2 was upregulated in A549 and H1299 cells compared with the normal lung epithelial BEAS-2B cells. HHLA2 deficiency inhibited NSCLC cell proliferation, migration, invasion, and induced G0/G1 phase arrest partially via inhibiting EGFR/MAPK/ERK signaling pathway. Furthermore, HHLA2 knockdown inhibited M2 polarization of TAMs via downregulating IL-10. In addition, knockdown of HHLA2 inhibited tumor growth in vivo.ConclusionHHLA2 downregulation inhibited NSCLC growth and TAM M2 polarization. HHLA2 may serve as a therapeutic target and promising prognostic biomarker in NSCLC.
Project description:Inflammation is the natural defensive response of the immune system to an injury or infection and is regulated by small molecule mediators triggering different phases of the inflammatory process. In particular, lipid mediators (LM) and cytokines exhibit crucial regulatory functions in the progression and resolution of inflammation. Macrophages play a central role in this process and can adopt distinct phenotypes with specialized functions depending on their microenvironment: inflammatory M1 macrophages drive inflammation by the release of pro-inflammatory cytokines and LMs, like prostaglandins (PG) and leukotrienes (LT), while resolving M2 macrophages promote inflammation resolution and tissue regeneration by production of anti-inflammatory cytokines and specialized pro resolving mediators (SPM). Aging is associated with chronic and unresolved, low-grade inflammation (“inflammaging”) and aging-related dysfunction of macrophages in the resolution of inflammation and tissue maintenance has been reported. Yet, the underlying molecular mechanisms and functional consequences of latter processes remain poorly understood. Here, we show that polarization of peritoneal macrophages (PM) from geriatric mice towards an M2-like phenotype is impaired versus adult mice, resulting in aberrant LM formation and cytokine release. In PMs isolated from adult mice (PM-A) we observed a shift in LM formation from PGs and LTs to SPMs already after 4 h of polarization towards M2 with interleukin (IL) 4. In contrast, PMs from geriatric mice (PM-G) produced mainly LTs and PGs upon polarization. This pattern persists over the course of 48 h of polarization. Proteomic profiling revealed that polarization of PM A towards M2 yields a more distinct phenotype, clearly separated from M1, when compared to PM-G. We observed similar aging-related changes in the lipidome and cytokine profile of spleen, lung and liver tissue from mice. Hence, we hypothesize that during aging macrophage polarization towards M2 is impaired, which in turn drives chronic inflammation and disturbs tissue maintenance. By combining state-of-the art lipidomic and proteomic profiling we aim to uncover new molecular targets for pharmaceutical interventions to improve therapeutic strategies for elderly patients with chronic inflammatory diseases.
Project description:Different species respond differently to severe injury, such as limb loss. In species that regenerate, limb loss is met with complete restoration of the limbs' form and function, whereas in mammals the amputated limb's stump heals and scars. In in vitro studies, electrical stimulation (EStim) has been shown to promote cell migration, and osteo- and chondrogenesis. In in vivo studies, after limb amputation, EStim causes significant new bone, cartilage and vessel growth. Here, in a rat model, the stumps of amputated rat limbs were exposed to EStim, and we measured extracellular matrix (ECM) deposition, macrophage distribution, cell proliferation and gene expression changes at early (3 and 7 days) and later stages (28 days). We found that EStim caused differences in ECM deposition, with less condensed collagen fibrils, and modified macrophage response by changing M1 to M2 macrophage ratio. The number of proliferating cells was increased in EStim treated stumps 7 days after amputation, and transcriptome data strongly supported our histological findings, with activated gene pathways known to play key roles in embryonic development and regeneration. In conclusion, our findings support the hypothesis that EStim shifts injury response from healing/scarring towards regeneration. A better understanding of if and how EStim controls these changes, could lead to strategies that replace scarring with regeneration.
Project description:Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Project description:Tumor-associated macrophages (TAMs) are a major component of leukocytic infiltrate in tumors, which facilitates tumor progression and promotes inflammation. TGF-β promotes the differentiation of non-activated macrophages into a TAM-like (M2-like) phenotype; however, the underlying mechanisms are not clear. In this study, we found that TGF-β induces a M2-like phenotype characterized by up-regulation of the anti-inflammatory cytokine IL-10, and down-regulation of the pro-inflammatory cytokines TNF-α and IL-12. In human THP-1 macrophages, overexpression of SNAIL caused M2-like differentiation by inhibiting pro-inflammatory cytokine release and promoting the expression of M2-specific markers. By contrast, SNAIL knockdown promoted M1 polarization through up-regulation of pro-inflammatory cytokines and abolished TGF-β-mediated M2-polarization of THP-1 macrophages. The SMAD2/3 and PI3K/AKT signaling pathways were crucial for TGF-β-induced SNAIL overexpression in THP-1 cells. These findings suggest that TGF-β skews macrophage polarization towards a M2-like phenotype via SNAIL up-regulation, and blockade of TGF-β/SNAIL signaling restores the production of pro-inflammatory cytokines. This study provides new understanding of the role of SNAIL in M2 polarization of macrophages, and suggests a potential therapeutic target for antitumor immunity.
Project description:Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid-Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.
Project description:Proinflammatory (M1) macrophages play a vital role in antitumor immunity, and regulation of proinflammatory macrophage polarization is critical for immunotherapy. The polarization of macrophages can be regulated by biological or chemical stimulation, but investigations of the regulatory effect of physical stimulation are limited. Herein, regulating macrophage polarization with localized electrical signals derived from a piezoelectric β-phase poly(vinylidene fluoride) (β-PVDF) film in a wireless mode is proposed. Charges released on the surface of the β-PVDF film driven by ultrasonic irradiation can significantly enhance the M1 polarization of macrophages. Mechanistic investigation confirms that electrical potentials rather than reactive oxygen species and mechanical forces enable Ca2+ influx through voltage-gated channels and establishment of the Ca2+-CAMK2A-NF-κB axis to promote the proinflammatory macrophage response during ultrasound treatment. Piezoelectric material-mediated electrical signal-activated proinflammatory macrophages significantly inhibit tumor cell proliferation. A method for electrogenetic regulation of immune cells as well as a powerful tool for engineering macrophages for immunotherapy is provided here.