Project description:This study investigates the adsorption mechanism differences among four nitrogenous dyes, sulforhodamine G (SRG), uncharged/deprotonated rhodamine B (RhB), orange II (Or II) and methyl blue (MB) by montmorillonite (MMT). MMT adsorption capacity for cationic MB was three times that of uncharged RhB and anionic SRG, while anionic Or II was not absorbed. Colloidal MMT particles have two types of surfaces, basal and edge, that interact with nitrogenous dyes very differently. The surface acidity of MMT was characterized with the pyridine adsorption method using in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). Adsorption of cationic MB was compared with the adsorption of RhB. In-situ attenuated total reflectance Fourier transform infrared (in-situ ATR-FTIR) spectroscopy indicated that a nitrogen atom on RhB complexes with a metal hydroxyl on an MMT edge through a water bridge. The highly polar edge hydroxyl is important to hydrogen bond formation. Cation ion exchange and washing experiments, as well as studies on the effect of temperature, pH and ionic strength on adsorption further clarified the adsorption mechanism. Our results provide insights into the effects of molecular structure on the adsorption of nitrogenous dyes by clay and the role of edge surfaces in the adsorption process.
Project description:The structure of the disaccharide cellulose subunit cellobiose (4-O-β-D-glucopyranosyl-D-glucose) in solution has been determined via neutron diffraction with isotopic substitution (NDIS), computer modeling and nuclear magnetic resonance (NMR) spectroscopic studies. This study shows direct evidence for an intramolecular hydrogen bond between the reducing ring HO3 hydroxyl group and the non-reducing ring oxygen (O5') that has been previously predicted by computation and NMR analysis. Moreover, this work shows that hydrogen bonding to the non-reducing ring O5' oxygen is shared between water and the HO3 hydroxyl group with an average of 50% occupancy by each hydrogen-bond donor. The glycosidic torsion angles φ(H) and ψ(H) from the neutron diffraction-based model show a fairly tight distribution of angles around approximately 22(°) and -40(°), respectively, in solution, consistent with the NMR measurements. Similarly, the hydroxymethyl torsional angles for both reducing and non-reducing rings are broadly consistent with the NMR measurements in this study, as well as with those from previous measurements for cellobiose in solution.
Project description:The origin of the peculiar amide spectral features of proteins in aqueous solution is investigated, by exploiting a combined theoretical and experimental approach to study UV Resonance Raman (RR) spectra of peptide molecular models, namely N-acetylglycine-N-methylamide (NAGMA) and N-acetylalanine-N-methylamide (NALMA). UVRR spectra are recorded by tuning Synchrotron Radiation at several excitation wavelengths and modeled by using a recently developed multiscale protocol based on a polarizable QM/MM approach. Thanks to the unparalleled agreement between theory and experiment, we demonstrate that specific hydrogen bond interactions, which dominate hydration dynamics around these solutes, play a crucial role in the selective enhancement of amide signals. These results further argue the capability of vibrational spectroscopy methods as valuable tools for refined structural analysis of peptides and proteins in aqueous solution.
Project description:Sensing anionic species in competitive aqueous media is a well-recognised challenge to long-term applications across a multitude of fields. Herein, we report a comprehensive investigation of the electrochemical anion sensing performance of novel halogen bonding (XB) and hydrogen bonding (HB) bis-ferrocene-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs), in a range of increasingly competitive aqueous organic solvent media (ACN/H2 O). In solution, the XB sensor notably outperforms the HB sensor, with substantial anion recognition induced cathodic voltammetric responses of the ferrocene/ferrocenium redox couple persisting even in highly competitive aqueous solvent media of 20 % water content. The response to halides, in particular, shows a markedly lower sensitivity to increasing water content associated with a unique halide selectivity at unprecedented levels of solvent polarity. The HB sensor, in contrast, generally displayed a preference towards oxoanions. A significant surface-enhancement effect was observed for both XB/HB receptive films in all solvent systems, whereby the HB sensor generally displayed larger responses towards oxoanions than its halogen bonding analogue.
Project description:The pharmaceutical cocrystal of caffeine-citric acid (CAF-CA, Form II) has been studied to explore the presence of hydrogen bonding interactions and structure-reactivity-property relationship between the two constituents CAF and Citric acid. The cocrystal was prepared by slurry crystallization. Powder X-ray diffraction (PXRD) analysis was done to characterize CAF-CA cocrystal. Also, differential scanning calorimetry (DSC) confirmed the existence of CAF-CA cocrystal. The vibrational spectroscopic (FT-IR and FT-Raman) signatures and quantum chemical approach have been used as a strategy to get insights into structural and spectral features of CAF-CA cocrystal. There was a good correlation among the experimental and theoretical results of dimer of cocrystal, as this model is capable of covering all nearest possible interactions present in the crystal structure of cocrystal. The spectroscopic results confirmed that (O33-H34) mode forms an intramolecular (C25 = O28∙∙∙H34-O33), while (O26-H27) (O39-H40) and (O43-H44) groups form intermolecular hydrogen bonding (O26-H27∙∙∙N24-C22, O39-H40∙∙∙O52 = C51 and O43-H44∙∙∙O86 = C83) in cocrystal due to red shifting and increment in bond length. The quantum theory of atoms in molecules (QTAIM) analysis revealed (O88-H89∙∙∙O41) as strongest intermolecular hydrogen bonding interaction with interaction energy -12.4247 kcal mol-1 in CAF-CA cocrystal. The natural bond orbital analysis of the second-order theory of the Fock matrix highlighted the presence of strong interactions (N∙∙∙H and O∙∙∙H) in cocrystal. The HOMO-LUMO energy gap value shows that the CAF-CA cocrystal is more reactive, less stable and softer than CAF active pharmaceutical ingredients. The electrophilic and nucleophilic reactivities of atomic sites involved in intermolecular hydrogen bond interactions in cocrystal have been demonstrated by mapping electron density isosurfaces over electrostatic potential i.e. plotting molecular electrostatic potential (MESP) map. The molar refractivity value of cocrystal lies within the set range by Lipinski and hence it may be used as orally active form. The results show that the physicochemical properties of CAF-CA cocrystal are enhanced in comparison to CAF (API).
Project description:Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molecules, which was not sensitive to the water model used. As expected, extensive aggregation of the caffeine molecules was observed, with the molecules stacking their flat faces against one another like coins, with their methylene groups staggered to avoid steric clashes. A dynamic equilibrum was observed between large n-mers, including stacks with all eight solute molecules, and smaller clusters, with the calculated osmotic coefficient being in acceptable agreement with the experimental value. The insensitivity of the results to water model and the congruence with experimental thermodynamic data suggest that the observed stacking interactions are a realistic representation of the actual association mechanism in aqueous caffeine solutions.
Project description:Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygen (?(s)PO(2)(-)). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman ?(s)PO(2)(-) signal could be modeled by monitoring attenuation of ?(s)PO(2)(-) in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered ?(s)PO(2)(-) vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in ?(s)PO(2)(-) signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals.
Project description:Trehalose is a naturally occurring disaccharide known to remarkably stabilize biomacromolecules in the biologically active state. The stabilizing effect is typically observed over a large concentration range and affects many macromolecules including proteins, lipids, and DNA. Of special interest is the transition from aqueous solution to the dense and highly concentrated glassy state of trehalose that has been implicated in bioadaptation of different organisms toward desiccation stress. Although several mechanisms have been suggested to link the structure of the low water content glass with its action as an exceptional stabilizer, studies are ongoing to resolve which are most pertinent. Specifically, the role that hydrogen bonding plays in the formation of the glass is not well resolved. Here we model aqueous trehalose mixtures over a wide concentration range, using molecular dynamics simulations with two available force fields. Both force fields indicate glass transition temperatures and osmotic pressures that are close to experimental values, particularly at high trehalose contents. We develop and employ a methodology that allows us to analyze the thermodynamics of hydrogen bonds in simulations at different water contents and temperatures. Remarkably, this analysis is able to link the liquid to glass transition with changes in hydrogen bond characteristics. Most notably, the onset of the glassy state can be quantitatively related to the transition from weakly to strongly correlated hydrogen bonds. Our findings should help resolve the properties of the glass and the mechanisms of its formation in the presence of added macromolecules.
Project description:Carotenoids are naturally abundant, fat-soluble pigmented compounds with dietary, antioxidant and vision protection advantages. The dietary carotenoids, Beta Carotene, Lutein, and Zeaxanthin, complexed with in bovine serum albumin (BSA) in aqueous solution, were explored using Raman spectroscopy to differentiate and quantify their spectral signatures. UV visible absorption spectroscopy was employed to confirm the linearity of responses over the concentration range employed (0.05-1 mg/mL) and, of the 4 Raman source wavelengths (785 nm, 660 nm, 532 nm, 473 nm), 532 nm was chosen to provide the optimal response. After preprocessing to remove water and BSA contributions, and correct for self-absorption, a partial least squares model with R2 of 0.9995, resulted in an accuracy of the Root Mean Squared Error of Prediction for Beta Carotene of 0.0032 mg/mL and Limit of Detection 0.0106 mg/mL. Principal Components Analysis clearly differentiated solutions of the three carotenoids, based primarily on small shifts of the main peak at ~1520 cm-1. Least squares fitting analysis of the spectra of admixtures of the carotenoid:protein complexes showed reasonable correlation between norminal% and fitted%, yielding 100% contribution when fitted with individual carotenoid complexes and variable contributions with multiple ratios of admixtures. The results indicate the technique can potentially be used to quantify the carotenoid content of human serum and to identify their differential contributions for application in clinical analysis.
Project description:Caffeine and diclofenac are molecules with high human intake, and both belong to the 'emergent' class of contaminants. These compounds have been found at different concentrations in many sources of water worldwide and have several negative impacts on aquatic life systems; that is why the search for new alternatives for their removal from aqueous media is of transcendental importance. In this sense, adsorption processes are an option to attack this problem and for this reason, biochar could be a good alternative. In this regard, were prepared six different biochar from fique bagasse (FB), a useless agroindustry by-product from fique processing. The six biochar preparations were characterized through several physicochemical procedures, while for the adsorption processes, pH, adsorption time and concentration of caffeine and diclofenac were evaluated. Results showed that the biochar obtained by pyrolysis at 850 °C and residence time of 3 h, labeled as FB850-3, was the material with the highest adsorbent capacity with values of 40.2 mg g-1 and 5.40 mg g-1 for caffeine and diclofenac, respectively. It was also shown that the experimental data from FB850-3 fitted very well the Redlich-Peterson isotherm model and followed a pseudo-first and pseudo-second-order kinetic for caffeine and diclofenac, respectively.