Project description:Environmentally friendly protection coatings have obtained increasing attention for their use in wooden materials, which can be destroyed easily when exposed to outdoor environments. A series of silane sol coatings coordinated with Eu3+ was prepared by hydrolyzing silane compounds. The obtained luminescent coating with three-dimensional net structure showed excellent optical, anti-ultraviolet aging, and thermal stability. The hybrid silane-modified compound coating was well-distributed on the wood by Si-O bonds to prevent its removal. The compound coating could stave off the decomposition of wood by converting ultraviolet light into red light and a charring action can endow the wood with thermal stability at high temperature, demonstrating the improvement of fire resistance and radiation residence following prolonged exposure to ultraviolet light, proving its excellent anti-ultraviolet aging properties.
Project description:Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Project description:BackgroundRenewable liquid biofuel production will reduce crude oil import of India. To displace the huge quantity of fossil fuels used for energy production, this research was focused on utilization of unexploited low-cost agricultural residues for biofuel production. Corncobs are a byproduct of corn processing industry, and till now it is not utilized for biofuel production, eventhough it has high lignocellulosic concent. In this study, combined hydrodynamic cavitation and enzymatic (HCE) method was evaluated as a pretreatment method of corncob for biofuel production. The most significant process parameters namely (i) enzyme loading (3-10 U g-1), (ii) biomass loading (2.5-5.0%), and (iii) duration (5-60 min) were optimized and their effects on combined HCE pretreatment of corncob was studied through response surface methodology for lignin reduction, hemicellulose reduction and cellulose increase.ResultsThe highest lignin reduction (47.4%) was obtained in orifice plate 1 (OP1) under the optimized conditions namely biomass loading at 5%, enzyme loading at 6.5 U g-1 of biomass, and reaction duration of 60 min. The above tested independent variables had a significant effect on lignin reduction. The cavitational yield and energy consumption under the above-mentioned optimized conditions for OP1 was 3.56 × 10-5 g J-1 and 1.35 MJ kg-1, respectively.ConclusionsIt is evident from the study that HCE is an effective technology and requires less energy (1.35 MJ kg-1) than other biomass pretreatment methods.
Project description:In this paper, a wood-SiO2 composite material was prepared via in-situ polymerization using vacuum/pressure impregnation technology using commercial scale nano silica sol and Chinese Fir (Cunninghamia lanceolate (Lamb.) Hook.). Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and water contact angle were used to study the changes in the microstructure and physical and mechanical properties of this composite. The results showed that silica sol can penetrate and distribute into the wood cell cavities and surface of cell walls and hence combine with the substances of wood materials. FTIR results indicated that the -OH groups of wood can polycondense in-situ with silica sol to form Si-O-C covalent bonds, and amorphous SiO2 formed from Si-O-Si bonds between the -OH groups of silica sol did not change the crystalline structure of wood cell walls. This in-situ formulating composite significantly improved the compact microstructure, thermal and mechanical properties, and hydrophobicity of the composites.
Project description:Gold nanorods (AuNRs) suspension at various concentrations was added into the sol-gel process to engineer nanostructured europium-doped silica host matrices as light-emitting composites. For this purpose, the samples were prepared following two different routes depending on the chemicals used as dopant and catalyst: (a) Eu(NO3)3·5H2O and HNO3, and (b) EuCl·6H2O and HCl. In any case, samples adding various concentrations of AuNRs suspension were prepared. The structural characterization of the samples was through STEM, backscattered electrons (BSE), and EDS analysis. Additionally, their optical properties were evaluated by PL spectroscopy and CIE colorimetry. The results confirmed that (a) methodology produced samples with AuNRs embedded and randomly distributed in the samples. However, these features were not observed in the samples obtained through (b) due to AuNRs dissolution in HCl media. Regarding the optical properties, the analysis of the relative intensity ratio 5D0 → 7F2/5D0 → 7F1 suggested that Eu3+ ions occupy non-centrosymmetric sites in (a) host matrices and centrosymmetric sites in (b). Hence, the increase of AuNRs suspension when fabricating (a) host matrices produced remarkable color changes in the luminescence of the samples towards the reddish-orange region. Meanwhile, the dissolution of AuNRs in (b) minimized the localized surface plasmon resonance (LSPR) effects on the Eu3+ luminescence. These findings revealed that the evaluation and selection of chemicals are critical factors when engineering these materials for more efficient coupling between the LSPR and Eu3+ luminescence.
Project description:The control of specific surface area and pore size of porous materials is essential for applications such as optics, medicine, and food technology. Here, the interspace between nanomaterials such as nanoparticles and nanosheets was studied. Nanoparticle-nanosheet interspaces were formed by incorporating bentonite nanosheets to the preparation of porous silica by the sol-gel method. The product had micropore and mesopores, which originated from internanoparticle space and nanoparticle-nanosheet spaces, respectively. These two types of pores had not only different sizes but also different aspect ratios. Time-domain nuclear magnetic resonance evaluation of the bentonite dispersion revealed that the dispersion state of bentonite in water prior to composite fabrication affected the formation of the pore structure. The pore size distribution could be easily changed by adding two-dimensional and flexible nanosheets owing to the change in the physical properties of the product. The silica-bentonite composite had a significantly larger specific surface area and pore volume than porous silica without bentonite. Water vapor adsorption measurements showed that the composite exhibited a larger maximum adsorption in comparison to porous silica. Therefore, a large improvement in the physical properties can be achieved by combining nanomaterials with different geometries.
Project description:Two common tree species of Betula alnoides (Betula) and New Zealand pine (Pinups radiata D. Don) were selected as the raw materials to prepare for the partially transparent wood (TW) in this study. Although the sample is transparent in a broad sense, it has color and pattern, so it is not absolutely colorless and transparent, and is therefore called partially transparent. For ease of interpretation, the following "partially transparent wood" is referred to as "transparent wood (TW)". The wood template (FW) was prepared by removing part of the lignin with the acid delignification method, and then the transparent wood was obtained by impregnating the wood template with a refractive-index-matched resin. The goal of this study is to achieve transparency of the wood (the light transmittance of the prepared transparent wood should be improved as much as possible) by exploring the partial delignification process of different tree species on the basis of retaining the aesthetics, texture and mechanical strength of the original wood. Therefore, in the process of removing partial lignin by the acid delignification method, the orthogonal test method was used to explore the better process conditions for the preparation of transparent wood. The tests of color difference, light transmittance, porosity, microstructure, chemical groups, mechanical strength were carried out on the wood templates and transparent wood under different experimental conditions. In addition, through the three major elements (lignin, cellulose, hemicellulose) test and orthogonal range analysis method, the influence of each process factor on the lignin removal of each tree species was obtained. It was finally obtained that the two tree species acquired the highest light transmittance at the experimental level 9 (process parameters: NaClO2 concentration 1wt%, 90 °C, 1.5 h); and the transparent wood retained most of the color and texture of the original wood under partial delignification up to 4.84-11.07%, while the mechanical strength with 57.76% improved and light transmittance with 14.14% higher than these properties of the original wood at most. In addition, the wood template and resin have a good synergy effect from multifaceted analysis, which showed that this kind of transparent wood has the potential to become the functional decorative material.
Project description:Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%-50% at rotor rotational speeds of 15-45 rpm and filled coefficients of 0.55-0.75. Four regression equations, i.e., the tensile strength (Ts), elongation at break (Eb), hardness (Ha) and rebound resilience (Rr) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the Ts, Eb and Rr of the panels were reduced, Ha was considerably increased by 17%-58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%-3%, which was much lower than commercial wood-based composites.
Project description:The degree of saponification, which is a dissolution characteristic of poly(vinyl alcohol) (PVA), is used to blend PVA to prepare a hydrogel microneedle (MN) patch. The MN patch was manufactured with an adjustable disassembly time using a molding process, and it was confirmed to have morphological stability and excellent needle formation. The permeability of the gelatin sheet, which is analogous to the skin elasticity coefficient of a real human, was confirmed. The penetration ratio had a very high value of 100% and sufficient physical properties to penetrate the skin. In the disassembly experiment, the MN patch was produced with ratios of lower:higher saponification of 6:4 (PVA6), 7:3 (PVA7), 8:2 (PVA8), 9:1 (PVA9), and 10:0 (PVA10). Degradation did not occur for PVA6 and PVA7 but occurred for PVA8, PVA9, and PVA10. A cytotoxicity test to investigate its suitability for use in the human body confirmed the cell viability of 80% or more and nontoxic properties. Therefore, sufficient cell viability was confirmed when compared to the existing products.
Project description:Biomass recalcitrance is still a main challenge for the production of biofuels and high-value products. Here, an alternative Miscanthus pretreatment method by using lignin-degrading bacteria was developed. Six efficient Miscanthus-degrading bacteria were first cultured to produce laccase by using 0.5% Miscanthus biomass as carbon source. After 1-5 days of incubation, the maximum laccase activities induced by Miscanthus in the six strains were ranged from 103 to 8091 U l-1 . Then, the crude enzymes were directly diluted by equal volumes of citrate buffer and added Miscanthus biomass to a solid concentration at 4% (w/v). The results showed that all bacterial pretreatments significantly decreased the lignin content, especially in the presence of two laccase mediators (ABTS and HBT). The lignin removal directly correlated with increases in total sugar and glucose yields after enzymatic hydrolysis. When ABTS was used as a mediator, the best lignin-degrading bacteria (Pseudomonas sp. AS1) can remove up to 50.1% lignin of Miscanthus by obtaining 2.2-fold glucose yield, compared with that of untreated biomass. Therefore, this study provided an effective Miscanthus pretreatment method by using lignin-degrading bacteria, which may be potentially used in improving enzymatic hydrolysability of biomass.