Unknown

Dataset Information

0

Machine learning predicts cerebral vasospasm in patients with subarachnoid haemorrhage.


ABSTRACT:

Background

Cerebral vasospasm (CV) is a feared complication which occurs after 20-40% of subarachnoid haemorrhage (SAH). It is standard practice to admit patients with SAH to intensive care for an extended period of resource-intensive monitoring. We used machine learning to predict CV requiring verapamil (CVRV) in the largest and only multi-center study to date.

Methods

Patients with SAH admitted to UCLA from 2013 to 2022 and a validation cohort from VUMC from 2018 to 2023 were included. For each patient, 172 unique intensive care unit (ICU) variables were extracted through the primary endpoint, namely first verapamil administration or no verapamil. At each institution, a light gradient boosting machine (LightGBM) was trained using five-fold cross validation to predict the primary endpoint at various hospitalization timepoints.

Findings

A total of 1750 patients were included from UCLA, 125 receiving verapamil. LightGBM achieved an area under the ROC (AUC) of 0.88 > 1 week in advance and ruled out 8% of non-verapamil patients with zero false negatives. Our models predicted "no CVRV" vs "CVRV within three days" vs "CVRV after three days" with AUCs = 0.88, 0.83, and 0.88, respectively. From VUMC, 1654 patients were included, 75 receiving verapamil. VUMC predictions averaged within 0.01 AUC points of UCLA predictions.

Interpretation

We present an accurate and early predictor of CVRV using machine learning with multi-center validation. This represents a significant step towards optimized clinical management and resource allocation in patients with SAH.

Funding

Robert E. Freundlich is supported by National Center for Advancing Translational Sciences federal grant UL1TR002243 and National Heart, Lung, and Blood Institute federal grant K23HL148640; these funders did not play any role in this study. The National Institutes of Health supports Vanderbilt University Medical Center which indirectly supported these research efforts. Neither this study nor any other authors personally received financial support for the research presented in this manuscript. No support from pharmaceutical companies was received.

SUBMITTER: Zarrin DA 

PROVIDER: S-EPMC11245940 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine learning predicts cerebral vasospasm in patients with subarachnoid haemorrhage.

Zarrin David A DA   Suri Abhinav A   McCarthy Karen K   Gaonkar Bilwaj B   Wilson Bayard R BR   Colby Geoffrey P GP   Freundlich Robert E RE   Gabel Eilon E  

EBioMedicine 20240619


<h4>Background</h4>Cerebral vasospasm (CV) is a feared complication which occurs after 20-40% of subarachnoid haemorrhage (SAH). It is standard practice to admit patients with SAH to intensive care for an extended period of resource-intensive monitoring. We used machine learning to predict CV requiring verapamil (CVRV) in the largest and only multi-center study to date.<h4>Methods</h4>Patients with SAH admitted to UCLA from 2013 to 2022 and a validation cohort from VUMC from 2018 to 2023 were in  ...[more]

Similar Datasets

2014-05-08 | GSE37924 | GEO
2014-05-08 | E-GEOD-37924 | biostudies-arrayexpress
| S-EPMC9468043 | biostudies-literature
| S-EPMC9643195 | biostudies-literature
| S-EPMC6692588 | biostudies-literature
| S-EPMC11920089 | biostudies-literature
| S-EPMC8093321 | biostudies-literature
| S-EPMC2967465 | biostudies-literature
| S-EPMC11497628 | biostudies-literature