Project description:Understanding large-scale circulations (LSCs) in turbulent convective systems is important for the study of stars, planets, and in many industrial applications. The canonical model of the LSC is quasi-planar with additional horizontal sloshing and torsional modes [Brown E, Ahlers G (2009) J Fluid Mech 638:383-400; Funfschilling D, Ahlers G (2004) Phys Rev Lett 92:194502; Xi HD et al. (2009) Phys Rev Lett 102:044503; Zhou Q et al. (2009) J Fluid Mech 630:367-390]. Using liquid gallium as the working fluid, we show, via coupled laboratory-numerical experiments in tanks with aspect ratios greater than unity ([Formula: see text]), that the LSC takes instead the form of a "jump rope vortex," a strongly 3D mode that periodically orbits around the tank following a motion much like a jump rope on a playground. Further experiments show that this jump rope flow also exists in more viscous fluids such as water, albeit with a far smaller signal. Thus, this jump rope mode is an essential component of the turbulent convection that underlies our observations of natural systems.
Project description:The past decade has witnessed an exponential increase in our ability to search the genome for genetic factors predisposing to cardiovascular disease (CVD) and in particular coronary heart disease (CHD). Identifying these genes could lead to the development of innovative strategies to prevent the cardiovascular complications of diabetes by allowing us to 1) create predictive algorithms for the identification of patients at especially high risk of CVD so that these individuals can undergo preventive interventions early in the natural history of the disease; 2) discover as yet unknown disease pathways linking diabetes to atherosclerosis, which can be used as targets for the development of new CVD-preventing drugs specifically directed at subjects with diabetes; and 3) devise personalized programs increasing the cost-effectiveness of preventive interventions by tailoring them to the genetic background of each patient. Substantial progress has been made in each of these three areas as exemplified by the recent development of a CHD genetic risk score improving CHD prediction among subjects with type 2 diabetes, the discovery of a diabetes-specific CHD locus on 1q25 pointing to glutamine synthase (GLUL) and the γ-glutamyl cycle as key regulators of CHD risk in diabetes, and the identification of two genetic loci allowing the selection of patients with type 2 diabetes who may especially benefit from intensive glycemic control. Translating these discoveries into clinical practice will not be without challenges, but the potential rewards, from the perspective of public health as well as that of persons with diabetes, make this goal worth pursuing.
Project description:Although β-dicarbonyl compounds are regularly employed as Michael donors, intermediates arising from the Michael addition of unsaturated β-ketoesters to α,β-unsaturated aldehydes are susceptible to multiple subsequent reaction pathways. We designed cyclic unsaturated β-ketoester substrates that enabled the development of the first diphenyl prolinol silyl ether catalyzed Michael-Michael cascade reaction initiated by a β-dicarbonyl Michael donor to form cyclohexene products. The reaction conditions we developed for this Michael-Michael cascade reaction were also amenable to a variety of linear unsaturated β-ketoester substrates, including some of the same linear unsaturated β-ketoester substrates that were previously ineffective in Michael-Michael cascade reactions. These studies thus revealed that a change in simple reaction conditions, such as solvent and additives, enables the same substrate to undergo different cascade reactions, thereby accessing different molecular scaffolds. These studies also culminated in the development of a general organocatalyzed Michael-Michael cascade reaction that generates highly functionalized cyclohexenes with up to four stereocenters, in up to 97% yield, 32:1 dr, and 99% ee, in a single step from a variety of unsaturated β-ketoesters.