Project description:Closely related species with a worldwide distribution provide an opportunity to understand evolutionary and biogeographic processes at a global scale. Hazel (Corylus) is an economically important genus of tree and shrub species found in temperate regions of Asia, North America and Europe. Here we use multiple nuclear and chloroplast loci to estimate a time-calibrated phylogenetic tree of the genus Corylus. We model the biogeographic history of this group and the evolutionary history of tree and shrub form. We estimate that multiple Corylus lineages dispersed long distances between Europe and Asia and colonised North America from Asia in multiple independent events. The geographic distribution of tree versus shrub form of species appears to be the result of 4-5 instances of convergent evolution in the past 25 million years. We find extensive discordance between our nuclear and chloroplast trees and potential evidence for chloroplast capture in species with overlapping ranges, suggestive of past introgression. The important crop species C. avellana is estimated to be closely related to C. maxima, C. heterophylla var. thunbergii and the Colurnae subsection. Our study provides a new phylogenetic hypothesis or Corylus and reveals how long-distance dispersal can shape the distribution of biodiversity in temperate plants.
Project description:MotivationAlternative RNA splicing plays a crucial role in defining protein function. However, despite its relevance, there is a lack of tools that characterize effects of splicing on protein interaction networks in a mechanistic manner (i.e. presence or absence of protein-protein interactions due to RNA splicing). To fill this gap, we present Linear Integer programming for Network reconstruction using transcriptomics and Differential splicing data Analysis (LINDA) as a method that integrates resources of protein-protein and domain-domain interactions, transcription factor targets, and differential splicing/transcript analysis to infer splicing-dependent effects on cellular pathways and regulatory networks.ResultsWe have applied LINDA to a panel of 54 shRNA depletion experiments in HepG2 and K562 cells from the ENCORE initiative. Through computational benchmarking, we could show that the integration of splicing effects with LINDA can identify pathway mechanisms contributing to known bioprocesses better than other state of the art methods, which do not account for splicing. Additionally, we have experimentally validated some of the predicted splicing effects that the depletion of HNRNPK in K562 cells has on signalling.
Project description:Background and aimsHybridization increases species adaptation and biodiversity but also obscures species boundaries. In this study, species delimitation and hybridization history were examined within one Chinese hazel species complex (Corylus chinensis-Corylus fargesii). Two species including four varieties have already been described for this complex, with overlapping distributions.MethodsA total of 322 trees from 44 populations of these four varieties across their ranges were sampled for morphological and molecular analyses. Climatic datasets based on 108 geographical locations were used to evaluate their niche differentiations. Flowering phenology was also observed for two co-occurring species or varieties.Key resultsFour statistically different phenotypic clusters were revealed, but these clusters were highly inconsistent with the traditional taxonomic groups. All the clusters showed statistically distinct niches, with complete or partial geographical isolation. Only two clusters displayed a distributional overlap, but they had distinct flowering phenologies at the site where they co-occurred. Population-level evidence based on the genotypes of ten simple sequence repeat loci supported four phenotypic clusters. In addition, one cluster was shown to have an admixed genetic composition derived from the other three clusters through repeated historical hybridizations.ConclusionsBased on our new evidence, it is better to treat the four clusters identified here as four independent species. One of them was shown to have an admixed genetic composition derived from the other three through repeated historical hybridizations. This study highlights the importance of applying integrative and statistical methods to infer species delimitations and hybridization history. Such a protocol should be adopted widely for future taxonomic studies.
Project description:A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies.
Project description:Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA.
Project description:The novel pestivirus species known as lateral-shaking inducing neuro-degenerative agent (LINDA) virus emerged in 2015 in a piglet-producing farm in Austria. Affected piglets showed strong congenital tremor as a result of severe lesions in the central nervous system. Here, we report the results of a controlled animal infection experiment. Post-weaning piglets were infected with LINDA to determine the susceptibility of pigs, the clinical consequences of infection and the humoral immune response against LINDA. No clinically overt disease signs were observed in the piglets. Viremia was hardly detectable, but LINDA was present in the spleen and several lymphatic organs until the end of the experiment on day 28 post-infection. Oronasal virus shedding together with the infection of one sentinel animal provided additional evidence for the successful replication and spread of LINDA in the piglets. Starting on day 14 post-infection, all infected animals showed a strong humoral immune response with high titers of neutralizing antibodies against LINDA. No cross-neutralizing activity of these sera with other pestiviral species was observed. According to these data, following postnatal infection, LINDA is a rather benign virus that can be controlled by the pig's immune system. However, further studies are needed to investigate the effects of LINDA on the fetus after intrauterine infection.
Project description:This study aimed to assess the frequency and severity of depressive symptoms and their relationship with sociodemographic characteristics in women with gestational diabetes mellitus (GDM) who participated in the LINDA-Brazil study. We conducted cross-sectional analyses of 820 women with GDM who were receiving prenatal care in the public health system. We conducted structured interviews to obtain clinical and sociodemographic information and applied the Edinburgh Postnatal Depression Scale (EPDS) to assess depressive symptoms. We classified the presence and severity of depressive symptoms using scores of ≥12 and ≥18, respectively. We used Poisson regression to estimate prevalence ratios (PR). Most of the women lived with a partner (88%), 50% were between 30 and 39 years old, 39% had finished high school, 39% had a family income of 1-2 minimum wages, and 47% were obese before their pregnancies. The presence of depressive symptoms was observed in 31% of the women, and severe depressive symptoms were observed in 10%; 8.3% reported self-harm intent. Lower parity and higher educational levels were associated with lower EPDS score. Depressive symptoms were common and frequently severe among women with GDM, indicating the need to consider this situation when treating such women, especially those who are more socially vulnerable. This trial is registered with NCT02327286, registered on 23 December 2014.
Project description:BackgroundIn addition to known allergens, other proteins in pollen can aid the development of an immune response in allergic individuals. The contribution of the "unknown" protein allergens is apparent in phylogenetically related species where, despite of high homology of the lead allergens, the degree of allergenic potential can vary greatly. The aim of this study was to identify other potentially allergenic proteins in pollen of three common and highly related allergenic tree species: birch (Betula pendula), hazel (Corylus avellana) and alder (Alnus glutinosa).MethodsFor that purpose, we carried out a comprehensive, comparative proteomic screening of the pollen from the three species. In order to maximize protein recovery and coverage, different protein extraction and isolation strategies during sample preparation were employed.ResultsAs a result, we report 2500-3000 identified proteins per each of the pollen species. Identified proteins were further used for a number of annotation steps, providing insight into differential distribution of peptidases, peptidase inhibitors and other potential allergenic proteins across the three species. Moreover, we carried out functional enrichment analyses that, interestingly, corroborated high species similarity in spite of their relatively distinct protein profiles.ConclusionWe provide to our knowledge first insight into proteomes of two very important allergenic pollen types, hazel and alder, where not even transcriptomics data are available, and compared them to birch. Datasets from this study can be readily used as protein databases and as such serve as basis for further functional studies.
Project description:Paclitaxel is a powerful antimitotic agent with excellent activity against a range of cancers. Hazel has been described as a paclitaxel-producing species among angiosperms. Fast-growing callus is a prerequisite for the success of callus production and then paclitaxel production. Therefore, optimizing the medium culture for enhancing callus growth is a crucial step for paclitaxel production. In this research, Murashige and Skoog (1962) (MS) medium was optimized for improving callus growth of hazel (Corylus avellana L.). The M10 medium (MS medium with pH 6.0 and supplemented with 1000 mg l-1 spirulina powder, 1000 mg l-1 casein hydrolysate and 3 g l-1 gelrite) significantly improved hazel callus growth. This modified MS medium increased callus fresh weight (55.8%) as compared to the control. M10 medium increased fatty acids yield of callus (66.7%) as compared to the control. Liquid M10 medium maintained growth over a longer period of time and also increased slightly, the paclitaxel production as compared to the control. This novel medium is promising for facilitating the mass production of hazel callus as a source of valuable metabolites including paclitaxel, linoleic and oleic acids.