Project description:We present a new technique for the correction of nonuniform rotation distortion in catheter-based optical coherence tomography (OCT), based on the statistics of speckle between A-lines using intensity-based dynamic light scattering. This technique does not rely on tissue features and can be performed on single frames of data, thereby enabling real-time image correction. We demonstrate its suitability in a gastrointestinal (GI) balloon-catheter OCT system, determining the actual rotational speed with high temporal resolution, and present corrected cross-sectional and en face views showing significant enhancement of image quality.
Project description:Since its inception, scanning probe microscopy (SPM) has established itself as the tool of choice for probing surfaces and functionalities at the nanoscale. Although recent developments in the instrumentation have greatly improved the metrological aspects of SPM, it is still plagued by the drifts and nonlinearities of the piezoelectric actuators underlying the precise nanoscale motion. In this work, we present an innovative computer-vision-based distortion correction algorithm for offline processing of functional SPM measurements, allowing two images to be directly overlaid with minimal error - thus correlating position with time evolution and local functionality. To demonstrate its versatility, the algorithm is applied to two very different systems. First, we show the tracking of polarisation switching in an epitaxial Pb(Zr0.2Ti0.8)O3 thin film during high-speed continuous scanning under applied tip bias. Thanks to the precise time-location-polarisation correlation we can extract the regions of domain nucleation and track the motion of domain walls until the merging of the latter in avalanche-like events. Secondly, the morphology of surface folds and wrinkles in graphene deposited on a PET substrate is probed as a function of applied strain, allowing the relaxation of individual wrinkles to be tracked.
Project description:Susceptibility induced distortion is a major artifact that affects the diffusion MRI (dMRI) data analysis. In the Human Connectome Project (HCP), the state-of-the-art method adopted to correct this kind of distortion is to exploit the displacement field from the B0 image in the reversed phase encoding images. However, both the traditional and learning-based approaches have limitations in achieving high correction accuracy in certain brain regions, such as brainstem. By utilizing the fiber orientation distribution (FOD) computed from the dMRI, we propose a novel deep learning framework named DistoRtion Correction Net (DrC-Net), which consists of the U-Net to capture the latent information from the 4D FOD images and the spatial transformer network to propagate the displacement field and back propagate the losses between the deformed FOD images. The experiments are performed on two datasets acquired with different phase encoding (PE) directions including the HCP and the Human Connectome Low Vision (HCLV) dataset. Compared to two traditional methods topup and FODReg and two deep learning methods S-Net and flow-net, the proposed method achieves significant improvements in terms of the mean squared difference (MSD) of fractional anisotropy (FA) images and minimum angular difference between two PEs in white matter and also brainstem regions. In the meantime, the proposed DrC-Net takes only several seconds to predict a displacement field, which is much faster than the FODReg method.
Project description:PurposeFor in vivo cardiac DTI, breathing motion and B0 field inhomogeneities produce misalignment and geometric distortion in diffusion-weighted (DW) images acquired with conventional single-shot EPI. We propose using a dimensionality reduction method to retrospectively estimate the respiratory phase of DW images and facilitate both distortion correction (DisCo) and motion compensation.MethodsFree-breathing electrocardiogram-triggered whole left-ventricular cardiac DTI using a second-order motion-compensated spin echo EPI sequence and alternating directionality of phase encoding blips was performed on 11 healthy volunteers. The respiratory phase of each DW image was estimated after projecting the DW images into a 2D space with Laplacian eigenmaps. DisCo and motion compensation were applied to the respiratory sorted DW images. The results were compared against conventional breath-held T2 half-Fourier single shot turbo spin echo. Cardiac DTI parameters including fractional anisotropy, mean diffusivity, and helix angle transmurality were compared with and without DisCo.ResultsThe left-ventricular geometries after DisCo and motion compensation resulted in significantly improved alignment of DW images with T2 reference. DisCo reduced the distance between the left-ventricular contours by 13.2% ± 19.2%, P < .05 (2.0 ± 0.4 for DisCo and 2.4 ± 0.5 mm for uncorrected). DisCo DTI parameter maps yielded no significant differences (mean diffusivity: 1.55 ± 0.13 × 10-3 mm2 /s and 1.53 ± 0.13 × 10-3 mm2 /s, P = .09; fractional anisotropy: 0.375 ± 0.041 and 0.379 ± 0.045, P = .11; helix angle transmurality: 1.00% ± 0.10°/% and 0.99% ± 0.12°/%, P = .44), although the orientation of individual tensors differed.ConclusionRetrospective respiratory phase estimation with LE-based DisCo and motion compensation in free-breathing cardiac DTI resulting in significantly reduced geometric distortion and improved alignment within and across slices.
Project description:To analyze the distortion problem of two-dimensional micro-electromechanical system (MEMS) micromirror in-plane scanning, this paper makes a full theoretical analysis of the distortion causes from many aspects. Firstly, the mathematical relations among the deflection angle, laser incidence angle, and plane scanning distance of the micromirror are constructed, and the types of projection distortion of the micromirror scanning are discussed. Then the simulation results of reflection angle distribution and point cloud distribution are verified by MATLAB software under different working conditions. Finally, a two-dimensional MEMS micromirror scanning projection system is built. The predetermined waveform can be scanned and projected successfully. The distortion theory is proved to be correct by analyzing the distortion of the projection images, which lays a foundation for practical engineering application.
Project description:PurposeTo assess the impact of working distance (WD) on optical distortion in optical coherence tomography (OCT) imaging and to evaluate the effectiveness of optical distortion correction in achieving consistent retinal Bruch's membrane (BM) layer curvature, regardless of variations in WD.MethodsTen subjects underwent OCT imaging with four serial macular volume scans, each employing distinct WD settings adjusted by balancing the sample and reference arm of the OCT interferometer (eye length settings changed). Either of two types of 30° standard objectives (SOs) was used. A ray tracing model was used to correct optical distortion, and BM layer curvature (represented as the second derivative of the curve) was measured. Linear mixed effects (LME) modeling was used to analyze factors associated with BM layer curvature, both before and after distortion correction.ResultsWD exhibited significant associations with axial length (β = -1.35, P < 0.001), SO type (P < 0.001), and eye length settings (P < 0.001). After optical distortion correction, the mean ± SD BM layer curvature significantly increased from 16.80 ± 10.08 µm-1 to 49.31 ± 7.50 µm-1 (P < 0.001). The LME model showed a significant positive association between BM layer curvature and WD (β = 1.94, P < 0.001). After distortion correction, the percentage change in BM layer curvature due to a 1-mm WD alteration decreased from 9.75% to 0.25%.ConclusionsCorrecting optical distortion in OCT imaging significantly mitigates the influence of WD on BM layer curvature, enabling a more accurate analysis of posterior eye morphology, especially when variations in WD are unavoidable.
Project description:We investigated the capability of a trained deep learning (DL) model with a convolutional neural network (CNN) in a different scanning environment in terms of ameliorating the quality of synthetic fluid-attenuated inversion recovery (FLAIR) images. The acquired data of 319 patients obtained from the retrospective review were used as test sets for the already trained DL model to correct the synthetic FLAIR images. Quantitative analyses were performed for native synthetic FLAIR and DL-FLAIR images against conventional FLAIR images. Two neuroradiologists assessed the quality and artifact degree of the native synthetic FLAIR and DL-FLAIR images. The quantitative parameters showed significant improvement on DL-FLAIR in all individual tissue segments and total intracranial tissues than on the native synthetic FLAIR (p < 0.0001). DL-FLAIR images showed improved image quality with fewer artifacts than the native synthetic FLAIR images (p < 0.0001). There was no significant difference in the preservation of the periventricular white matter hyperintensities and lesion conspicuity between the two FLAIR image sets (p = 0.217). The quality of synthetic FLAIR images was improved through artifact correction using the trained DL model on a different scan environment. DL-based correction can be a promising solution for ameliorating the quality of synthetic FLAIR images to broaden the clinical use of synthetic magnetic resonance imaging (MRI).
Project description:The projected speckle-based three-dimensional digital image correlation method (3D-DIC) is being increasingly used in the reliability measurement of microelectronic packaging structures because of its noninvasive nature, high precision, and low cost. However, during the measurement of the thermal reliability of packaging structures, the thermal airflow generated by heating introduces distortions in the images captured by the DIC measurement system, impacting the accuracy and reliability of noncontact measurements. To address this challenge, a thermal airflow distortion correction model based on the transformer attention mechanism is proposed specifically for the measurement of thermal warpage in microelectronic packaging structures. This model avoids the oversmoothing issue associated with convolutional neural networks and the lack of physical constraints in generative adversarial networks, ensuring the precision of grayscale gradient changes in speckle patterns and minimizing adverse effects on DIC calculation accuracy. By inputting the distorted images captured by the DIC measurement system into the network, corrected images are obtained for 3D-DIC calculations, thus allowing the thermal warpage measurement results of the sample to be acquired. Through experiments measuring topography with customized step block specimens, the effectiveness of the proposed method in improving warpage measurement accuracy is confirmed; this is particularly true when captured images are affected by thermal airflow at 140 °C and 160 °C, temperatures commonly encountered in thermal reliability testing of packaging structures. The method successfully reduces the standard deviation from 9.829 to 5.943 µm and from 12.318 to 6.418 µm, respectively. The results demonstrate the substantial practical value of this method for measuring thermal warpage in microelectronic packaging structures.
Project description:To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT).The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom.The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation coefficient of PMMA estimate was also improved with the proposed spectral distortion correction. Finally, the relative RMS error of water, lipid, and protein decompositions in dual-energy imaging was significantly reduced from 53.4% to 6.8% after correction was applied.The study demonstrated that dramatic distortions in the recorded raw image yielded from a photon-counting detector could be expected, which presents great challenges for applying the quantitative material decomposition method in spectral CT. The proposed semi-empirical correction method can effectively reduce these errors caused by various artifacts, including pulse pileup and charge sharing effects. Furthermore, rather than detector-specific simulation packages, the method requires a relatively simple calibration process and knowledge about the incident spectrum. Therefore, it may be used as a generalized procedure for the spectral distortion correction of different photon-counting detectors in clinical breast CT systems.
Project description:Surprisingly, estimated voxel displacement maps (VDMs), based on image registration, seem to work just as well to correct geometrical distortion in functional MRI data (EPI) as VDMs based on actual information about the magnetic field. In this article, we compare our new image registration-based distortion correction method ‘COPE’ to an implementation of the pixelshift method. Our approach builds on existing image registration-based techniques using opposite phase encoding, extending these by local cost aggregation. Comparison of these methods with 3T and 7T spin-echo (SE) and gradient-echo (GE) data show that the image registration-based method is a good alternative to the fieldmap-based EPI distortion correction method.