Project description:Our cohort comprised 40 non-syndromic ASD children.We conducted genome wide analysis using Affymetrix Cytoscan-HD microchips. We identified pathogenic CNVs in 7 patients (17.5%), other variant classified as variants of uncertain significance (VUS) or benign.
Project description:In order to unveil the molecular mechanisms at play during the development of autistic brains, we studied cells that are representative of the very early stages of ontogenesis, namely stem cells. We used nasal olfactory stem cells that are readily accessible and can be biopsied safely. We recruited a relatively homogeneous cohort of nine adults with severe autism and low to very low developmental disabilities, and included two more adults with either Asperger syndrome or high-functioning autism, to enlarge the spectrum. The cohort was then paired with 11 age- and gender-matched control individuals. Stem cells were purified, banked and used for a transcriptomic study. Two-colors experiment. The cohort was then paired with 11 age- and gender-matched control individuals. Stem cells were purified, banked and used for a transcriptomic study. Validation by reverse transcription design.
Project description:Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental diseases characterized by a triad of specific behavioral traits: abnormal social interactions, communication deficits and stereotyped or repetitive behaviors. Several recent studies showed that ASDs have a strong genetic basis, contributing to the discovery of a number of ASD-associated genes. Due to the genetic complexity of these disorders, mouse strains with targeted deletion of ASD genes have become an essential tool to investigate the molecular and neurodevelopmental mechanisms underlying ASD. Here we will review the most relevant genetic mouse models developed by targeted inactivation of ASD-associated genes, and discuss their importance for the development of novel pharmacological therapies of these disorders.
Project description:Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown whether "glycogene" variants cause changes in glycosylation and whether they contribute to the etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by studies in the normal brain and congenital disorders of glycosylation, which are often accompanied by ASD-like behaviors. The purpose of this review is to present evidence that supports a contribution of extracellular glycans and glycoconjugates to the etiology and pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.
Project description:Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by delayed/abnormal language development, deficits in social interaction, repetitive behaviors and restricted interests. The heterogeneity in clinical presentation of ASD, likely due to different etiologies, complicates genetic/biological analyses of these disorders. DNA microarray analyses were conducted on 116 lymphoblastoid cell lines (LCL) from individuals with idiopathic autism who are divided into 3 phenotypic subgroups according to severity scores from the commonly used Autism Diagnostic Interview-Revised questionnaire and age-matched, nonautistic controls. Statistical analyses of gene expression data from control LCL against that of LCL from ASD probands identify genes for which expression levels are either quantitatively or qualitatively associated with phenotypic severity. Comparison of the significant differentially expressed genes from each subgroup relative to the control group reveals differentially expressed genes unique to each subgroup as well as genes in common across subgroups. Among the findings unique to the most severely affected ASD group are genes that regulate circadian rhythm, which has been shown to have multiple effects on neurological as well as metabolic functions commonly dysregulated in autism. Among the genes common to all 3 subgroups of ASD are 5 novel genes which appear to associate with androgen sensitivity, which may underlie the strong 4:1 bias towards affected males. Gene expression profiling of 116 LCL from autistic (87) and nonautistic (29) individuals were obtained using a custom-printed DNA microarray containing 39,936 elements (TIGR 40K Human array, GPL3427) and a reference design in which each sample was compared to the Stratagene Universal Human RNA standard. The 87 autistic samples were divided into phenotypic subgroups (language, mild, savant) on the basis of cluster analyses of scores from an autism diagnostic questionnaire, the Autism Diagnostic Interview-Revised instrument. Differentially expressed genes were determined for all autistic vs. control groups, as well as for each of 3 phenotypic ASD groups and controls.
Project description:Autism spectrum disorder (ASD) is a neurodevelopmental disease with complex heterogeneity and aberrations in multiple levels of neurobiology. Recently, our understanding of the molecular abnormalities in ASD has been greatly expanded through transcriptomic analyses of postmortem brains. However, a crucial molecular pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled the global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of ASD cortices and cerebella. Strikingly, we observed a global bias of hypoediting in ASD brains, common to different brain regions and involving many genes with critical neurological function. The large-scale RNA editing changes allowed us to reveal novel insights of RNA editing regulation. Through genome-wide protein-RNA binding analyses and detailed molecular assays, we show that the Fragile X proteins, FMRP and FXR1P, interact with ADAR protens and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA editing alterations between ASD and Fragile X syndrome, thus establishing RNA editing as a novel molecular link underlying these two highly related diseases. Our findings support a role for RNA editing dysregulation in ASD pathophysiology and highlight novel mechanisms for RNA editing regulation.
Project description:To examine how activation of different toll-like receptors (TLR) impacts gene expression in Autism Spectrum Disorder (ASD), we cultured peripheral blood monocytes from children with ASD, Pervasive Developmental Disorder Not Otherwise Specified (PDDNOS) or Asperger and typically developing children and treated them with either lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to activate LTR2 or 4 respectively. Following 24 hours of stimulation, we then performed RNA sequencing to profile mRNA responses between non-treated (NT), LTA and LPS treated samples for each diagnosis (control or ASD).