Project description:A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.
Project description:In Colombia, dogs and opossum are the most important mammals in domestic and sylvatic T. cruzi transmission. However, the role of both species has not been evaluated in areas where both species converge in the peridomestic area. To evaluate the infection status of domestic and wild mammals in peridomestic habitats of Puerto Valdivia, Antioquia Department. The infection of domestic dogs and small wild mammals was performed by hemoculture, molecular and serological methods. Additionally, the infection in children under 15 years old and triatomine searches was carried out. We found that 16.07% and 34% dogs, and 59.1% and 61.1% Didelphis marsupialis were found positive by molecular and serological methods respectively. Moreover, in 25% and 75% of the infected dogs were detected TcIDom and TcI sylvatic, respectively, while all the D. marsupialis were infected with TcI. Six Rattus rattus and three Proechimys semispinosus were captured but without T. cruzi infection. Finally, none of the 82 children were positive and no triatomine bugs were captured. D. marsupialis and domestics dogs have an important role in the transmission of T. cruzi suggesting a potential risk in T. cruzi transitions areas.
Project description:BackgroundChagas disease is a systemic pathology caused by Trypanosoma cruzi. This parasite reveals remarkable genetic variability, evinced in six Discrete Typing Units (DTUs) named from T. cruzi I to T. cruzi VI (TcI to TcVI). Recently newly identified genotypes have emerged such as TcBat in Brazil, Colombia and Panama associated to anthropogenic bats. The genotype with the broadest geographical distribution is TcI, which has recently been associated to severe cardiomyopathies in Argentina and Colombia. Therefore, new studies unraveling the genetic structure and natural history of this DTU must be pursued.ResultsWe conducted a spatial and temporal analysis on 50 biological clones of T. cruzi I (TcI) isolated from humans with different clinical phenotypes, triatomine bugs and mammal reservoirs across three endemic regions for Chagas disease in Colombia. These clones were submitted to a nuclear Multilocus Sequence Typing (nMLST) analysis in order to elucidate its genetic diversity and clustering. After analyzing 13 nuclear housekeeping genes and obtaining a 5821 bp length alignment, we detected two robust genotypes within TcI henceforth named TcIDOM (associated to human infections) and a second cluster associated to peridomestic and sylvatic populations. Additionaly, we detected putative events of recombination and an intriguing lack of linkage disequilibrium.ConclusionsThese findings reinforce the emergence of an enigmatic domestic T. cruzi genotype (TcIDOM), and demonstrates the high frequency of recombination at nuclear level across natural populations of T. cruzi. Therefore, the need to pursue studies focused on the diferential virulence profiles of TcI strains. The biological and epidemiological implications of these findings are herein discussed.
Project description:Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared.
Project description:Understanding the blood meal patterns of insects that are vectors of diseases is fundamental in unveiling transmission dynamics and developing strategies to impede or decrease human-vector contact. Chagas disease has a complex transmission cycle that implies interactions between vectors, parasites and vertebrate hosts. In Ecuador, limited data on human infection are available; however, the presence of active transmission in endemic areas has been demonstrated. The aim of this study was to determine the diversity of hosts that serve as sources of blood for triatomines in domestic, peridomestic and sylvatic transmission cycles, in two endemic areas of Ecuador (central coastal and southern highland regions). Using conserved primers and DNA extracted from 507 intestinal content samples from five species of triatomines (60 Panstrongylus chinai, 17 Panstrongylus howardi, 1 Panstrongylus rufotuberculatus, 427 Rhodnius ecuadoriensis and 2 Triatoma carrioni) collected from 2006 to 2013, we amplified fragments of the cytb mitochondrial gene. After sequencing, blood meal sources were identified in 416 individuals (146 from central coastal and 270 from southern highland regions), achieving ≥ 95% identity with GenBank sequences (NCBI-BLAST tool). The results showed that humans are the main source of food for triatomines, indicating that human-vector contact is more frequent than previously thought. Although other groups of mammals, such as rodents, are also an available source of blood, birds (particularly chickens) might have a predominant role in the maintenance of triatomines in these areas. However, the diversity of sources of blood found might indicate a preference driven by triatomine species. Moreover, the presence of more than one source of blood in triatomines collected in the same place indicated that dispersal of vectors occurs regardless the availability of food. Dispersal capacity of triatomines needs to be evaluated to propose an effective strategy that limits human-vector contact and, in consequence, to decrease the risk of T. cruzi transmission.
Project description:BackgroundOil palm plantation establishment in Colombia has the potential to impact Chagas disease transmission by increasing the distribution range of Rhodnius prolixus. In fact, previous studies have reported Trypanosoma cruzi natural infection in R. prolixus captured in oil palms (Elaeis guineensis) in the Orinoco region, Colombia. The aim of this study is to understand T. cruzi infection in vectors in oil palm plantations relative to community composition and host dietary specialization by analyzing vector blood meals and comparing these results to vectors captured in a native palm tree species, Attalea butyracea.MethodsRhodnius prolixus nymphs (n = 316) were collected from A. butyracea and E. guineensis palms in Tauramena, Casanare, Colombia. Vector blood meals from these nymphs were determined by amplifying and sequencing a vertebrate-specific 12S rRNA gene fragment.ResultsEighteen vertebrate species were identified and pigs (Sus scrofa) made up the highest proportion of blood meals in both habitats, followed by house mouse (Mus musculus) and opossum (Didelphis marsupialis). Individual bugs feeding only from generalist mammal species had the highest predicted vector infection rate, suggesting that generalist mammalian species are more competent hosts for T. cruzi infection .ConclusionsOil palm plantations and A. butyracea palms found in altered areas provide a similar quality habitat for R. prolixus populations in terms of blood meal availability. Both habitats showed similarities in vector infection rate and potential host species, representing a single T. cruzi transmission scenario at the introduced oil palm plantation and native Attalea palm interface.
Project description:BackgroundIn Colombia, Rhodnius prolixus and Triatoma dimidiata are the main domestic triatomine species known to transmit T. cruzi. However, there are multiple reports of T. cruzi transmission involving secondary vectors. In this work, we carried out an eco-epidemiological study on Margarita Island, located in the Caribbean region of Colombia, where Chagas disease is associated with non-domiciliated vectors.MethodsTo understand the transmission dynamics of Trypanosoma cruzi in this area, we designed a comprehensive, multi-faceted study including the following: (i) entomological evaluation through a community-based insect-surveillance campaign, blood meal source determination and T. cruzi infection rate estimation in triatomine insects; (ii) serological determination of T. cruzi prevalence in children under 15 years old, as well as in domestic dogs and synanthropic mammals; (iii) evaluation of T. cruzi transmission capacity in dogs and Didelphis marsupialis, and (iv) genetic characterization of T. cruzi isolates targeting spliced-leader intergene region (SL-IR) genotypes.ResultsOut of the 124 triatomines collected, 94% were Triatoma maculata, and 71.6% of them were infected with T. cruzi. Blood-meal source analysis showed that T. maculata feeds on multiple hosts, including humans and domestic dogs. Serological analysis indicated 2 of 803 children were infected, representing a prevalence of 0.25%. The prevalence in domestic dogs was 71.6% (171/224). Domestic dogs might not be competent reservoir hosts, as inferred from negative T. cruzi xenodiagnosis and haemoculture tests. However, 61.5% (8/13) of D. marsupialis, the most abundant synanthropic mammal captured, were T. cruzi-positive on xenodiagnosis and haemocultures.ConclusionsThis study reveals the role of peridomestic T. maculata and dogs in T. cruzi persistence in this region and presents evidence that D. marsupialis are a reservoir mediating peridomestic-zoonotic cycles. This picture reflects the complexity of the transmission dynamics of T. cruzi in an endemic area with non-domiciliated vectors where active human infection exists. There is an ongoing need to control peridomestic T. maculata populations and to implement continuous reservoir surveillance strategies with community participation.
Project description:In the Brazilian Amazon, the suspected source of infection in an outbreak of acute Chagas disease involving 10 patients was Euterpe oleracea (açaí berry) juice. Patient blood and juice samples contained Trypanosoma cruzi TcIV, indicating oral transmission of the Chagas disease agent.
Project description:BackgroundColombia's National Army is one of the largest military institutions in the country based on the number of serving members and its presence throughout the country. There have been reports of cases of acute or chronic cases of Chagas disease among active military personnel. These may be the result of military-associated activities performed in jungles and other endemic areas or the consequence of exposure to Trypanosoma cruzi inside military establishments/facilities located in endemic areas. The aim of the present study was to describe the circulation of T. cruzi inside facilities housing four training and re-training battalions [Battalions of Instruction, Training en Re-training (BITERs)] located in municipalities with historical reports of triatomine bugs and Chagas disease cases. An entomological and faunal survey of domestic and sylvatic environments was conducted inside each of these military facilities.MethodsInfection in working and stray dogs present in each BITER location was determined using serological and molecular tools, and T. cruzi in mammal and triatomine bug samples was determined by PCR assay. The PCR products of the vertebrate 12S rRNA gene were also obtained and subjected to Sanger sequencing to identify blood-feeding sources. Finally, we performed a geospatial analysis to evaluate the coexistence of infected triatomines and mammals with the military personal inside of each BITER installation.ResultsIn total, 86 specimens were collected: 82 Rhodnius pallescens, two Rhodnius prolixus, one Triatoma dimidiata and one Triatoma maculata. The overall T. cruzi infection rate for R. pallescens and R. prolixus was 56.1 and 100% respectively, while T. dimidiata and T. maculata were not infected. Eight feeding sources were found for the infected triatomines, with opossum and humans being the most frequent sources of feeding (85.7%). Infection was most common in the common opossum Didelphis marsupialis, with infection levels of 77.7%. Sylvatic TcI was the most frequent genotype, found in 80% of triatomines and 75% of D. marsupialis. Of the samples collected from dogs (n = 52), five (9.6%; 95% confidence interval: 3.20-21.03) were seropositive based on two independent tests. Four of these dogs were creole and one was a working dog. The spatial analysis revealed a sympatry between infected vectors and mammals with the military population.ConclusionsWe have shown a potential risk of spillover of sylvatic T. cruzi transmission to humans by oral and vectorial transmission in two BITER installations in Colombia. The results indicate that installations where 100,000 active military personnel carry out training activities should be prioritized for epidemiological surveillance of Chagas disease.
Project description:Introducción. La enfermedad de Chagas y la leishmaniasis tradicionalmente se han considerado zoonosis endémicas de áreas rurales del país. Sin embargo, la aparición de casos de estas enfermedades en áreas urbanas sugiere nuevos ciclos de circulación de estos parásitos. Por esta razón, se ha propuesto a los perros como centinelas de estos agentes zoonóticos, dado su rol como huéspedes accidentales o reservorios. Objetivo. Evaluar la circulación silenciosa de Leishmania spp. y Trypanosoma cruzi en perros de zonas urbanas de la ciudad de Sincelejo, Sucre. Materiales y métodos. Se analizaron 100 muestras de sangre de perros para amplificar la región ITS1 de Leishmania spp. Las muestras positivas se utilizaron para amplificar la región conservada del minicírculo del ADN del cinetoplasto de Leishmania infantum y para el análisis de polimorfismos de longitud de fragmentos de restricción con la endonucleasa HaeIII. Por otra parte, se amplificó un fragmento del ADN satelital de T. cruzi. Además, se evaluó la presencia de infecciones por Ehrlichia canis y Anaplasma platys, como potencialmente modificadoras de las manifestaciones clínicas. Resultados. De los 100 perros estudiados, se detectó: Leishmania spp. en 32, T. cruzi en 12, ambos parásitos en 7 y L. infantum en 18. Se encontraron infecciones por anaplasmatáceos en 18, y coinfecciones por bacterias y parásitos en 8 de los perros. En general, 47 de los animales estaban infectados por, al menos, un agente etiológico. Conclusión. Se demuestra la circulación de L. infantum y T. cruzi en zonas urbanas de Sincelejo, así como coinfecciones de estos parásitos junto con parásitos de la familia Anaplasmataceae. El presente estudio demuestra la conveniencia del uso de perros en la vigilancia epidemiológica de estos agentes zoonóticos.