Unknown

Dataset Information

0

Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping.


ABSTRACT: The functional diversity of natural killer (NK) cell repertoires stems from differentiation, homeostatic, receptor-ligand interactions and adaptive-like responses to viral infections. In the present study, we generated a single-cell transcriptional reference map of healthy human blood- and tissue-derived NK cells, with temporal resolution and fate-specific expression of gene-regulatory networks defining NK cell differentiation. Transfer learning facilitated incorporation of tumor-infiltrating NK cell transcriptomes (39 datasets, 7 solid tumors, 427 patients) into the reference map to analyze tumor microenvironment (TME)-induced perturbations. Of the six functionally distinct NK cell states identified, a dysfunctional stressed CD56bright state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant effector CD56dim state were commonly enriched across tumor types, the ratio of which was predictive of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design of new NK cell therapies and can be extended through transfer learning to interrogate new datasets from experimental perturbations or disease conditions.

SUBMITTER: Netskar H 

PROVIDER: S-EPMC11291284 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping.

Netskar Herman H   Pfefferle Aline A   Goodridge Jodie P JP   Sohlberg Ebba E   Dufva Olli O   Teichmann Sarah A SA   Brownlie Demi D   Michaëlsson Jakob J   Marquardt Nicole N   Clancy Trevor T   Horowitz Amir A   Malmberg Karl-Johan KJ  

Nature immunology 20240702 8


The functional diversity of natural killer (NK) cell repertoires stems from differentiation, homeostatic, receptor-ligand interactions and adaptive-like responses to viral infections. In the present study, we generated a single-cell transcriptional reference map of healthy human blood- and tissue-derived NK cells, with temporal resolution and fate-specific expression of gene-regulatory networks defining NK cell differentiation. Transfer learning facilitated incorporation of tumor-infiltrating NK  ...[more]

Similar Datasets

| S-EPMC8027170 | biostudies-literature
| S-EPMC4344546 | biostudies-literature
| S-EPMC7004525 | biostudies-literature
| S-EPMC4084720 | biostudies-literature
| S-EPMC9812906 | biostudies-literature
| S-EPMC7343909 | biostudies-literature
| S-EPMC7689423 | biostudies-literature
| S-EPMC6594622 | biostudies-literature
| S-EPMC2995813 | biostudies-literature
2025-06-30 | GSE300685 | GEO