Project description:Recent studies have revealed that feed-forward loops (FFLs) as regulatory motifs have synergistic roles in cellular systems and their disruption may cause diseases including cancer. FFLs may include two regulators such as transcription factors (TFs) and microRNAs (miRNAs). In this study, we extensively investigated TF and miRNA regulation pairs, their FFLs, and TF-miRNA mediated regulatory networks in two major types of testicular germ cell tumors (TGCT): seminoma (SE) and non-seminoma (NSE). Specifically, we identified differentially expressed mRNA genes and miRNAs in 103 tumors using the transcriptomic data from The Cancer Genome Atlas. Next, we determined significantly correlated TF-gene/miRNA and miRNA-gene/TF pairs with regulation direction. Subsequently, we determined 288 and 664 dysregulated TF-miRNA-gene FFLs in SE and NSE, respectively. By constructing dysregulated FFL networks, we found that many hub nodes (12 out of 30 for SE and 8 out of 32 for NSE) in the top ranked FFLs could predict subtype-classification (Random Forest classifier, average accuracy ≥90%). These hub molecules were validated by an independent dataset. Our network analysis pinpointed several SE-specific dysregulated miRNAs (miR-200c-3p, miR-25-3p, and miR-302a-3p) and genes (EPHA2, JUN, KLF4, PLXDC2, RND3, SPI1, and TIMP3) and NSE-specific dysregulated miRNAs (miR-367-3p, miR-519d-3p, and miR-96-5p) and genes (NR2F1 and NR2F2). This study is the first systematic investigation of TF and miRNA regulation and their co-regulation in two major TGCT subtypes.
Project description:Testicular cancer is the most commonly diagnosed cancer among young men in the United States. Seminoma comprises a little over half of all testicular germ cell neoplasms. After radial inguinal orchiectomy, management of seminoma is dictated by tumor stage and risk stratification. Dissemination patterns for metastatic testicular cancer are predictable and reproducible, initially metastasizing to the retroperitoneum before disseminating to the lungs or other viscera. Seminomas are exquisitely sensitive to radiation therapy and platinum-based chemotherapy. Approximately 80-85% of men presenting with early stage (clinical stage I) seminoma will not experience a relapse after radical orchiectomy alone. Therefore, surveillance has been supported by the National Comprehensive Cancer Network (NCCN) guidelines as the preferred management strategy. For those at higher risk of relapse, one or two cycles of single-agent carboplatin or radiation therapy are alternative options to reduce the risk of relapse. For patients with early disseminated seminoma (clinical stage IIA and IIB), radiation therapy or chemotherapy with three cycles of bleomycin, etoposide, cisplatin (BEP) or four cycles of etoposide and cisplatin (EP) are well-established options with excellent cure rates. However, these therapies may be associated with significant long-term toxicities. Primary retroperitoneal lymph node dissection (RPLND) in patients with low-volume metastatic seminoma has recently been evaluated for safety and efficacy in prospective clinical trials. Finally, though the role of surgery in patients with advanced seminoma (clinical stage IIC and III) is limited, a subset of patients with a residual mass following chemotherapy >3 cm suggestive of viable germ cell tumor on imaging may benefit from surgical resection. Herein we review the contemporary indications for surgery and outcomes for men with testicular seminoma.
Project description:Therapy for early stage testicular seminoma has changed radically over the past several decades. Given high cure rates and clinical trials supporting less active therapy in most cases, close observation after radical orchiectomy is now considered standard of care for clinical stage (CS) IA/IB seminoma, with either radiation therapy (RT) or chemotherapy salvage options possible. For CS IIA/IIB seminoma characterized by non-bulky retroperitoneal lymph node involvement (≤5 cm in greatest dimension), RT or combination chemotherapy are the standard of care. Given high comparable survival rates, preventing treatment-related toxicity and second malignancy, and limiting quality of life deficits associated with intense treatment has gained much greater importance. Clinical trials are currently testing the feasibility of retroperitoneal lymph node dissection (RPLND) for low volume CS IIA/IIB metastatic testicular seminoma to this end. Likewise, one cycle of chemotherapy is being evaluated as an adjuvant approach to reduce recurrence rates in CS I disease with unfavorable risk factors. Moreover, recent genomic and molecular studies have recently identified novel signatures and a potential biomarker for testicular seminoma. In this review, we first summarize the evolution of early stage seminoma management and discuss the effectiveness and drawbacks of contemporary treatment strategies. We further outline future perspectives and potential challenges in management of early stage testicular seminoma.
Project description:BackgroundNon-seminoma testicular cancer survivors (TCS) have an increased risk of developing colorectal cancer (CRC) when they have been treated with platinum-based chemotherapy. Previously we demonstrated that among Hodgkin lymphoma survivors (HLS) there is enrichment of rare mismatch repair (MMR) deficient (MMRd) CRCs with somatic hits in MMR genes. We speculate that this phenomenon could also occur among other cancer survivors. We therefore aim to determine the MMR status and its underlying mechanism in CRC among TCS (TCS-CRC).MethodsThirty TCS-CRC, identified through the Dutch pathology registry, were analysed for MMR proteins by immunohistochemistry. Next-generation sequencing was performed in MMRd CRCs without MLH1 promoter hypermethylation (n = 4). Data were compared with a male cohort with primary CRC (P-CRC, n = 629).ResultsMMRd was found in 17% of TCS-CRCs vs. 9% in P-CRC (p = 0.13). MMRd was more often caused by somatic double or single hit in MMR genes by mutation or loss of heterozygosity in TCS-CRCs (3/30 (10%) vs. 11/629 (2%) in P-CRCs (p < 0.01)).ConclusionsMMRd CRCs with somatic double or single hit are more frequent in this small cohort of TCS compared with P-CRC. Exposure to anticancer treatments appears to be associated with the development of these rare MMRd CRC among cancer survivors.
Project description:Seminoma (SE) is the most frequent type of testicular tumour, affecting predominantly young men. Early detection and diagnosis of SE could significantly improve life quality and reproductive health after diagnosis and treatment. Copy number variation (CNV) has already been associated with various cancers as well as SE. In this study, we selected four genes (MAGEC2, NANOG, RASSF1A, and KITLG) for CNV analysis in genomic DNA (gDNA), which are located on chromosomes susceptible to gains, and whose aberrant expression was already detected in SE. Furthermore, CNV was analysed in cell-free DNA (cfDNA) from seminal plasma. Analysis was performed by droplet digital polymerase chain reaction (ddPCR) on gDNA from SE and nonmalignant testicular tissue. Seminal plasma cfDNA from SE patients before and after surgery was analysed, as well as from healthy volunteers. The CNV hotspot in gDNA from SE tissue was detected for the first time in all analysed genes, and for two genes, NANOG and KITLG it was reflected in cfDNA from seminal plasma. Although clinical value is yet to be determined, presented data emphasize a potential use of CNV as a potential SE biomarker from a liquid biopsy.
Project description:Testicular germ cell tumors (TGCTs) are classified into two main subtypes, seminoma (SE) and non-seminoma (NSE), but their molecular distinctions remain largely unexplored. Here, we used expression data for mRNAs and microRNAs (miRNAs) from The Cancer Genome Atlas (TCGA) to perform a systematic investigation to explain the different telomere length (TL) features between NSE (n = 48) and SE (n = 55). We found that TL elongation was dominant in NSE, whereas TL shortening prevailed in SE. We further showed that both mRNA and miRNA expression profiles could clearly distinguish these two subtypes. Notably, four telomere-related genes (TelGenes) showed significantly higher expression and positively correlated with telomere elongation in NSE than SE: three telomerase activity-related genes (TERT, WRAP53 and MYC) and an independent telomerase activity gene (ZSCAN4). We also found that the expression of genes encoding Yamanaka factors was positively correlated with telomere lengthening in NSE. Among them, SOX2 and MYC were highly expressed in NSE versus SE, while POU5F1 and KLF4 had the opposite patterns. These results suggested that enhanced expression of both TelGenes (TERT, WRAP53, MYC and ZSCAN4) and Yamanaka factors might induce telomere elongation in NSE. Conversely, the relative lack of telomerase activation and low expression of independent telomerase activity pathway during cell division may be contributed to telomere shortening in SE. Taken together, our results revealed the potential molecular profiles and regulatory roles involving the TL difference between NSE and SE, and provided a better molecular understanding of this complex disease.
Project description:Gene expression patterns of testicular seminoma were analysed applying oligonucleotide microarrays in 40 specimens of different tumour stages (pT1, pT2, pT3) and in 3 normal testes. Keywords: ordered
Project description:PurposePatients with non-seminoma testicular cancer (NSTC) cancer can be subfertile or infertile, and present reduced sperm quality, but the underlying mechanisms are unknown. The aim of this study was to compare the sperm proteome of patients with NSTC, who cryopreserved their sperm before starting cancer treatment, with that from healthy fertile men.Materials and methodsSemen volume, sperm motility and sperm concentration were evaluated before the cryopreservation of samples from patients with NSTC (n=15) and the control group (n=15). Sperm proteomic analysis was performed by liquid chromatography-tandem mass spectrometry and the differentially expressed proteins (DEPs) between the two groups were identified using bioinformatic tools.ResultsA total of 189 DEPs was identified in the dataset, from which five DEPs related to sperm function and fertilization were selected for validation by Western blot. We were able to validate the underexpression of the mitochondrial complex subunits NADH:Ubiquinone Oxidoreductase Core Subunit S1 (NDUFS1) and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2), as well as the underexpression of the testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (ATP1A4) in the NSTC group.ConclusionsOur results indicate that sperm mitochondrial dysfunction may explain the observed decrease in sperm concentration, total sperm count and total motile count in NSTC patients. The identified DEPs may serve as potential biomarkers for the pathophysiology of subfertility/infertility in patients with NSTC. Our study also associates the reduced fertilizing ability of NSTC patients with the dysregulation of important sperm molecular mechanisms.
Project description:BackgroundTesticular germ cell tumours (TGCTs) have a high sensitivity to chemotherapy and a high cure rate, although with serious adverse effects. In the search for tumour suppressive drugs, the RANKL inhibitor Denosumab, used to treat osteoporosis, came up as a candidate since RANKL signalling was recently identified in the testis.MethodsExpression of RANKL, RANK and OPG, and the effects of RANKL inhibition were investigated in human TGCTs, TGCT-derived cell-lines, and TGCT-xenograft models. Serum RANKL was measured in TGCT-patients.ResultsRANKL, RANK, and OPG were expressed in germ cell neoplasia in situ (GCNIS), TGCTs, and TGCT-derived cell lines. RANKL-inhibition reduced proliferation of seminoma-derived TCam-2 cells, but had no effect on embryonal carcinoma-derived NTera2 cells. Pretreatment with Denosumab did not augment the effect of cisplatin in vitro. However, inhibition of RANKL in vivo reduced tumour growth exclusively in the TCam-2-xenograft model and Denosumab-treatment decreased proliferation in human GCNIS cultures. In TGCT-patients serum RANKL had no prognostic value.ConclusionsThis study shows that the RANKL signalling system is expressed in GCNIS and seminoma where RANKL inhibition suppresses tumour growth in vitro and in vivo. Future studies are needed to determine whether RANKL is important for the malignant transformation or transition from GCNIS to invasive tumours.
Project description:Seminoma is the most common subtype of testicular germ cell tumor, with an increasing incidence worldwide. Clusterin (CLU) expression was found to be downregulated in testicular seminoma in our previous study. We now expanded the sample size, and further indicated that CLU expression correlates with tumor stage. Tcam-2 cell line was used to investigate the CLU function in testicular seminoma, and CLU was found to inhibit the proliferation and metastasis abilities. Besides, extracellular matrix protein COL15a1 was demonstrated as the downstream of CLU to affect the epithelial-mesenchymal transition (EMT) process via competitively binding to DDR1 with COL1A1 and inhibiting the phosphorylation of PYK2. MEF2A was found to interact with CLU and bind to the promoter of COL15a1 and so upregulate its expression. This is the first study using testicular xenografts in situ to simulate testicular seminoma metastatic and proliferative capacities. In conclusion, CLU acts as a tumor suppressor to inhibit the metastasis of testicular seminoma by interacting with MEF2A to upregulate COL15a1 and blocking the EMT process.