Project description:D-amino acid aminotransferases (D-AATs) from Geobacillus toebii SK1 and Geobacillus sp. strain KLS1 were cloned and characterized from a genetic, catalytic, and structural aspect. Although the enzymes were highly thermostable, their catalytic capability was approximately one-third of that of highly active Bacilli enzymes, with respective turnover rates of 47 and 55 s(-1) at 50 degrees C. The Geobacillus enzymes were unique and shared limited sequence identities of below 45% with D-AATs from mesophilic and thermophilic Bacillus spp., except for a hypothetical protein with a 72% identity from the G. kaustophilus genome. Structural alignments showed that most key residues were conserved in the Geobacillus enzymes, although the conservative residues just before the catalytic lysine were distinctively changed: the 140-LRcD-143 sequence in Bacillus D-AATs was 144-EYcY-147 in the Geobacillus D-AATs. When the EYcY sequence from the SK1 enzyme was mutated into LRcD, a 68% increase in catalytic activity was observed, while the binding affinity toward alpha-ketoglutarate decreased by half. The mutant was very close to the wild-type in thermal stability, indicating that the mutations did not disturb the overall structure of the enzyme. Homology modeling also suggested that the two tyrosine residues in the EYcY sequence from the Geobacillus D-AATs had a pi/pi interaction that was replaceable with the salt bridge interaction between the arginine and aspartate residues in the LRcD sequence.
Project description:A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 degrees C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 degrees C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.
Project description:This study aimed to identify thermo-stable pullulanase-producing bacteria in soil samples of potato fields and food-producing companies. Pullulan agar medium was used to screen 17 bacterial strains, which were incubated at 65 °C. The isolate with the maximum activity (375U/ml) was selected and recognized as Geobacillus stearothermophilus ADM-11 by morphological, biochemical characterization, and 16S rRNA gene sequencing. The pullulanase production required optimum pH of 7 and temperature of 75 °C, respectively. The electrophoresis of purified pullulanase on SDS-polyacrylamide gel revealed 83 kDa of a molecular weight that is active at 70 °C and pH 7.0. It was also stable at 90 °C but its activity was decreased by 10 % at 100 °C. The action of pullulanase was increased and stabilized by Ca+2 among the metal ions. Beta and gamma-cyclodextrins inhibited enzyme activity while ethylenediaminetetraacetate (EDTA) and phenylmethylsulfonyl fluoride (PMSF) have no significant effect on pullulanase activity. A full-length pullulanase gene was amplified from G. stearothermophilus ADM-11 using genomic DNA 2.1 kb of PCR product which was then purified and ligated in the cloning vector pTZ57R using the TA cloning technique. Colony PCR confirmed cloning on the positive clones after the pullulanase gene had been ligated and subjected to restriction digestion. It revealed 74 % similarity with the reported pullulanase gene from Geobacillus sp. 44C. The thermostability of pullulanase and its ability to degrade raw pullulan may therefore have wide-scale applications in starch processing, the detergent business, and new biotechnological applications.
Project description:Lipases with unique substrate specificity are highly desired in biotechnological applications. In this study, a putative marine Geobacillus sp. monoacylglycerol lipase (GMGL) encoded gene was identified by a genomic mining strategy. The gene was expressed in Escherichia coli as a His-tag fusion protein and purified by affinity chromatography with a yield of 264 mg per liter fermentation broth. The recombinant GMGL shows the highest hydrolysis activity at 60 °C and pH 8.0, and the half-life was 60 min at 70 °C. The GMGL is active on monoacylglycerol (MAG) substrate but not diacylglycerol (DAG) or triacylglycerol (TAG), and produces MAG as the single product in the esterification reaction. Modeling structure analysis showed that the catalytic triad is formed by Ser97, Asp196 and His226, and the flexible cap region is constituted by residues from Ala120 to Thr160. A mutagenesis study on Leu142, Ile145 and Ile170 located in the substrate binding tunnel revealed that these residues were related with its substrate specificity. The kcat/Km value toward the pNP-C6 substrate in mutants Leu142Ala, Ile145Ala and Ile170Phe increased to 2.3-, 1.4- and 2.2-fold as compared to that of the wild type, respectively.
Project description:Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDSPAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50°C and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and in silico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.
Project description:The glycogen branching enzyme (EC 2.4.1.18), which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB) was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.
Project description:The gene GK3045 (741 bp) from Geobacillus kaustophilus HTA426 was cloned, sequenced, and overexpressed into Escherichia coli Rosetta (DE3). The deduced protein was a 30-kDa monomeric esterase with high homology to carboxylesterases from Geobacillus thermoleovorans NY (99% identity) and Geobacillus stearothermophilus (97% identity). This protein suffered a proteolytic cut in E. coli, and the problem was overcome by introducing a mutation in the gene (K212R) without affecting the activity. The resulting Est30 showed remarkable thermostability at 65 degrees C, above the optimum growth temperature of G. kaustophilus HTA426. The optimum pH of the enzyme was 8.0. In addition, the purified enzyme exhibited stability against denaturing agents, like organic solvents, detergents, and urea. The protein catalyzed the hydrolysis of p-nitrophenyl esters of different acyl chain lengths, confirming the esterase activity. The sequence analysis showed that the protein contains a catalytic triad formed by Ser93, Asp192, and His222, and the Ser of the active site is located in the conserved motif Gly91-X-Ser93-X-Gly95 included in most esterases and lipases. However, this carboxylesterase showed no more than 17% sequence identity with the closest members in the eight families of microbial carboxylesterases. The three-dimensional structure was modeled by sequence alignment and compared with others carboxylesterases. The topological differences suggested the classification of this enzyme and other Geobacillus-related carboxylesterases in a new alpha/beta hydrolase family different from IV and VI.
Project description:Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the Tm for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.
Project description:Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2-C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi. The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases.