Unknown

Dataset Information

0

Early warning of trends in commercial wildlife trade through novel machine-learning analysis of patent filing.


ABSTRACT: Unsustainable wildlife trade imperils thousands of species, but efforts to identify and reduce these threats are hampered by rapidly evolving commercial markets. Businesses trading wildlife-derived products innovate to remain competitive, and the patents they file to protect their innovations also provide an early-warning of market shifts. Here, we develop a novel machine-learning approach to analyse patent-filing trends and apply it to patents filed from 1970-2020 related to six traded taxa that vary in trade legality, threat level, and use type: rhinoceroses, pangolins, bears, sturgeon, horseshoe crabs, and caterpillar fungus. We found 27,308 patents, showing 130% per-year increases, compared to a background rate of 104%. Innovation led to diversification, including new fertilizer products using illegal-to-trade rhinoceros horn, and novel farming methods for pangolins. Stricter regulation did not generally correlate with reduced patenting. Patents reveal how wildlife-related businesses predict, adapt to, and create market shifts, providing data to underpin proactive wildlife-trade management approaches.

SUBMITTER: Hinsley A 

PROVIDER: S-EPMC11294592 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Early warning of trends in commercial wildlife trade through novel machine-learning analysis of patent filing.

Hinsley A A   Challender D W S DWS   Masters S S   Macdonald D W DW   Milner-Gulland E J EJ   Fraser J J   Wright J J  

Nature communications 20240801 1


Unsustainable wildlife trade imperils thousands of species, but efforts to identify and reduce these threats are hampered by rapidly evolving commercial markets. Businesses trading wildlife-derived products innovate to remain competitive, and the patents they file to protect their innovations also provide an early-warning of market shifts. Here, we develop a novel machine-learning approach to analyse patent-filing trends and apply it to patents filed from 1970-2020 related to six traded taxa tha  ...[more]

Similar Datasets

| S-EPMC10007031 | biostudies-literature
| S-EPMC7892287 | biostudies-literature
| S-EPMC8408155 | biostudies-literature
| S-EPMC9984366 | biostudies-literature
| S-EPMC7538910 | biostudies-literature
| S-EPMC8828720 | biostudies-literature
| S-EPMC7286499 | biostudies-literature
| S-EPMC9166699 | biostudies-literature
| S-EPMC10747537 | biostudies-literature
| S-EPMC9566305 | biostudies-literature